Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Train Model fails because 'list' object has no attribute 'lower'

I am training a classifier over tweets for sentiment analysis purposes.

The code is the following:

df = pd.read_csv('Trainded Dataset Sentiment.csv', error_bad_lines=False)
df.head(5)

enter image description here

#TWEET
X = df[['SentimentText']].loc[2:50000]
#SENTIMENT LABEL
y = df[['Sentiment']].loc[2:50000]

#Apply Normalizer function over the tweets
X['Normalized Text'] = X.SentimentText.apply(text_normalization_sentiment)
X = X['Normalized Text']

After normalization, the dataframe looks like:

enter image description here

X_train, X_test, y_train, y_test =
sklearn.cross_validation.train_test_split(X, y, 
test_size=0.2, random_state=42)

#Classifier
vec = TfidfVectorizer(min_df=5, max_df=0.95, sublinear_tf=True,
                      use_idf=True, ngram_range=(1,2))
svm_clf = svm.LinearSVC(C=0.1)
vec_clf = Pipeline([('vectorizer', vec), ('pac', svm_clf)])
vec_clf.fit(X_train, y_train) #Problem
joblib.dump(vec_clf, 'svmClassifier.pk1', compress=3)

It fails with the following error:

AttributeError: 'list' object has no attribute 'lower'

enter image description here

Full Traceback:
--------------------------------------------------------------------------- AttributeError                            Traceback (most recent call last) <ipython-input-33-4264de810c2b> in <module>()
      4 svm_clf = svm.LinearSVC(C=0.1)
      5 vec_clf = Pipeline([('vectorizer', vec), ('pac', svm_clf)])
----> 6 vec_clf.fit(X_train, y_train)
      7 joblib.dump(vec_clf, 'svmClassifier.pk1', compress=3)

C:\Users\Monviso\Anaconda3\lib\site-packages\sklearn\pipeline.py in fit(self, X, y, **fit_params)
    255             This estimator
    256         """
--> 257         Xt, fit_params = self._fit(X, y, **fit_params)
    258         if self._final_estimator is not None:
    259             self._final_estimator.fit(Xt, y, **fit_params)

C:\Users\Monviso\Anaconda3\lib\site-packages\sklearn\pipeline.py in
_fit(self, X, y, **fit_params)
    220                 Xt, fitted_transformer = fit_transform_one_cached(
    221                     cloned_transformer, None, Xt, y,
--> 222                     **fit_params_steps[name])
    223                 # Replace the transformer of the step with the fitted
    224                 # transformer. This is necessary when loading the transformer

C:\Users\Monviso\Anaconda3\lib\site-packages\sklearn\externals\joblib\memory.py in __call__(self, *args, **kwargs)
    360 
    361     def __call__(self, *args, **kwargs):
--> 362         return self.func(*args, **kwargs)
    363 
    364     def call_and_shelve(self, *args, **kwargs):

C:\Users\Monviso\Anaconda3\lib\site-packages\sklearn\pipeline.py in
_fit_transform_one(transformer, weight, X, y, **fit_params)
    587                        **fit_params):
    588     if hasattr(transformer, 'fit_transform'):
--> 589         res = transformer.fit_transform(X, y, **fit_params)
    590     else:
    591         res = transformer.fit(X, y, **fit_params).transform(X)

C:\Users\Monviso\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in fit_transform(self, raw_documents, y)    1379             Tf-idf-weighted document-term matrix.    1380         """
-> 1381         X = super(TfidfVectorizer, self).fit_transform(raw_documents)    1382         self._tfidf.fit(X)  1383         # X is already a transformed view of raw_documents so

C:\Users\Monviso\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in fit_transform(self, raw_documents, y)
    867 
    868         vocabulary, X = self._count_vocab(raw_documents,
--> 869                                           self.fixed_vocabulary_)
    870 
    871         if self.binary:

C:\Users\Monviso\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in _count_vocab(self, raw_documents, fixed_vocab)
    790         for doc in raw_documents:
    791             feature_counter = {}
--> 792             for feature in analyze(doc):
    793                 try:
    794                     feature_idx = vocabulary[feature]

C:\Users\Monviso\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in <lambda>(doc)
    264 
    265             return lambda doc: self._word_ngrams(
--> 266                 tokenize(preprocess(self.decode(doc))), stop_words)
    267 
    268         else:

C:\Users\Monviso\Anaconda3\lib\site-packages\sklearn\feature_extraction\text.py in <lambda>(x)
    230 
    231         if self.lowercase:
--> 232             return lambda x: strip_accents(x.lower())
    233         else:
    234             return strip_accents

AttributeError: 'list' object has no attribute 'lower'
like image 222
Alex Avatar asked Aug 25 '17 14:08

Alex


People also ask

How do I fix AttributeError list object has no attribute lower?

The Python "AttributeError: 'list' object has no attribute 'lower'" occurs when we call the lower() method on a list instead of a string. To solve the error, call lower() on a string, e.g. by accessing the list at a specific index or by iterating over the list.

How do you use a TF IDF Vectorizer?

TF-IDF Vectorizer is a measure of originality of a word by comparing the number of times a word appears in document with the number of documents the word appears in. formula for TF-IDF is: TF-IDF = TF(t, d) x IDF(t), where, TF(t, d) = Number of times term "t" appears in a document "d".


1 Answers

The TFIDF Vectorizer should expect an array of strings. So if you pass him an array of arrays of tokenz, it crashes.

like image 199
Robert Avatar answered Oct 06 '22 08:10

Robert