I am working in a small project with a goal to give a definition of Gcd which gives the gcd of two numbers along with the proof that the result is correct. But I am unable to give a total definition of Gcd. The definition of Gcd in Idris 1.3.0 is total but uses assert_total to force totality which defeats the purpose of my project. Does someone have a total definition of Gcd which does not use assert_total?
P.S. - My codes are uploaded in https://github.com/anotherArka/Idris-Number-Theory.git
I have a version which uses the Accessible
relation to show that the sum of the two numbers you're finding the gcd of gets smaller on every recursive call: https://gist.github.com/edwinb/1907723fbcfce2fde43a380b1faa3d2c#file-gcd-idr-L25
It relies on this, from Prelude.Wellfounded
:
data Accessible : (rel : a -> a -> Type) -> (x : a) -> Type where
Access : (rec : (y : a) -> rel y x -> Accessible rel y) ->
Accessible rel x
The general idea is that you can make a recursive call by explicitly stating what gets smaller, and providing a proof on each recursive call that it really does get smaller. For gcd
, it looks like this (gcdt
for the total version since gcd
is in the prelude):
gcdt : Nat -> Nat -> Nat
gcdt m n with (sizeAccessible (m + n))
gcdt m Z | acc = m
gcdt Z n | acc = n
gcdt (S m) (S n) | (Access rec)
= if m > n
then gcdt (minus m n) (S n) | rec _ (minusSmaller_1 _ _)
else gcdt (S m) (minus n m) | rec _ (minusSmaller_2 _ _)
sizeAccessible
is defined in the prelude and allows you to explicitly state here that it's the sum of the inputs that's getting smaller. The recursive call is smaller than the input because rec
is an argument of Access rec
.
If you want to see in a bit more detail what's going on, you can try replacing the minusSmaller_1
and minusSmaller_2
calls with holes, to see what you have to prove:
gcdt : Nat -> Nat -> Nat
gcdt m n with (sizeAccessible (m + n))
gcdt m Z | acc = m
gcdt Z n | acc = n
gcdt (S m) (S n) | (Access rec)
= if m > n
then gcdt (minus m n) (S n) | rec _ ?smaller1
else gcdt (S m) (minus n m) | rec _ ?smaller2
For example:
*gcd> :t smaller1
m : Nat
n : Nat
rec : (y : Nat) ->
LTE (S y) (S (plus m (S n))) -> Accessible Smaller y
--------------------------------------
smaller1 : LTE (S (plus (minus m n) (S n))) (S (plus m (S n)))
I don't know of anywhere that documents Accessible
in much detail, at least for Idris (you might find examples for Coq), but there are more examples in the base
libraries in Data.List.Views
, Data.Vect.Views
and Data.Nat.Views
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With