I need to calculate the time complexity of the following code:
for (i = 1; i <= n; i++) { for(j = 1; j <= i; j++) { // Some code } }
Is it O(n^2)?
+n iterations n*(n+1)/2 which is O(n2) .
The loop executes N times, so the sequence of statements also executes N times. Since we assume the statements are O(1), the total time for the for loop is N * O(1), which is O(N) overall.
Each iteration in the while loop, either one or both indexes move toward each other. In the worst case, only one index moves toward each other at any time. The loop iterates n-1 times, but the time complexity of the entire algorithm is O(n log n) due to sorting.
Yes, nested loops are one way to quickly get a big O notation.
Typically (but not always) one loop nested in another will cause O(n²).
Think about it, the inner loop is executed i times, for each value of i. The outer loop is executed n times.
thus you see a pattern of execution like this: 1 + 2 + 3 + 4 + ... + n times
Therefore, we can bound the number of code executions by saying it obviously executes more than n times (lower bound), but in terms of n how many times are we executing the code?
Well, mathematically we can say that it will execute no more than n² times, giving us a worst case scenario and therefore our Big-Oh bound of O(n²). (For more information on how we can mathematically say this look at the Power Series)
Big-Oh doesn't always measure exactly how much work is being done, but usually gives a reliable approximation of worst case scenario.
4 yrs later Edit: Because this post seems to get a fair amount of traffic. I want to more fully explain how we bound the execution to O(n²) using the power series
From the website: 1+2+3+4...+n = (n² + n)/2 = n²/2 + n/2. How, then are we turning this into O(n²)? What we're (basically) saying is that n² >= n²/2 + n/2. Is this true? Let's do some simple algebra.
It should be clear that n² >= n (not strictly greater than, because of the case where n=0 or 1), assuming that n is always an integer.
Actual Big O complexity is slightly different than what I just said, but this is the gist of it. In actuality, Big O complexity asks if there is a constant we can apply to one function such that it's larger than the other, for sufficiently large input (See the wikipedia page)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With