I have a float array that needs to be referenced many times on the device, so I believe the best place to store it is in __ constant __ memory (using this reference). The array (or vector) will need to be written once at run-time when initializing, but read by multiple different functions many millions of times, so constant copying to the kernel each function call seems like A Bad Idea.
const int n = 32;
__constant__ float dev_x[n]; //the array in question
struct struct_max : public thrust::unary_function<float,float> {
float C;
struct_max(float _C) : C(_C) {}
__host__ __device__ float operator()(const float& x) const { return fmax(x,C);}
};
void foo(const thrust::host_vector<float> &, const float &);
int main() {
thrust::host_vector<float> x(n);
//magic happens populate x
cudaMemcpyToSymbol(dev_x,x.data(),n*sizeof(float));
foo(x,0.0);
return(0);
}
void foo(const thrust::host_vector<float> &input_host_x, const float &x0) {
thrust::device_vector<float> dev_sol(n);
thrust::host_vector<float> host_sol(n);
//this method works fine, but the memory transfer is unacceptable
thrust::device_vector<float> input_dev_vec(n);
input_dev_vec = input_host_x; //I want to avoid this
thrust::transform(input_dev_vec.begin(),input_dev_vec.end(),dev_sol.begin(),struct_max(x0));
host_sol = dev_sol; //this memory transfer for debugging
//this method compiles fine, but crashes at runtime
thrust::device_ptr<float> dev_ptr = thrust::device_pointer_cast(dev_x);
thrust::transform(dev_ptr,dev_ptr+n,dev_sol.begin(),struct_max(x0));
host_sol = dev_sol; //this line crashes
}
I tried adding a global thrust::device_vector dev_x(n), but that also crashed at run-time, and would be in __ global __ memory rather than __ constant__ memory
This can all be made to work if I just discard the thrust library, but is there a way to use the thrust library with globals and device constant memory?
Good question! You can't cast a __constant__
array as if it's a regular device pointer.
I will answer your question (after the line below), but first: this is a bad use of __constant__
, and it isn't really what you want. The constant cache in CUDA is optimized for uniform access across threads in a warp. That means all threads in the warp access the same location at the same time. If each thread of the warp accesses a different constant memory location, then the accesses get serialized. So your access pattern, where consecutive threads access consecutive memory locations, will be 32 times slower than a uniform access. You should really just use device memory. If you need to write the data once, but read it many times, then just use a device_vector: initialize it once, and then read it many times.
To do what you asked, you can use a thrust::counting_iterator
as the input to thrust::transform
to generate a range of indices into your __constant__
array. Then your functor's operator()
takes an int
index operand rather than a float
value operand, and does the lookup into constant memory.
(Note that this means your functor is now __device__
code only. You could easily overload the operator to take a float and call it differently on host data if you need portability.)
I modified your example to initialize the data and print the result to verify that it is correct.
#include <stdio.h>
#include <stdlib.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include <thrust/iterator/counting_iterator.h>
const int n = 32;
__constant__ float dev_x[n]; //the array in question
struct struct_max : public thrust::unary_function<float,float> {
float C;
struct_max(float _C) : C(_C) {}
// only works as a device function
__device__ float operator()(const int& i) const {
// use index into constant array
return fmax(dev_x[i],C);
}
};
void foo(const thrust::host_vector<float> &input_host_x, const float &x0) {
thrust::device_vector<float> dev_sol(n);
thrust::host_vector<float> host_sol(n);
thrust::device_ptr<float> dev_ptr = thrust::device_pointer_cast(dev_x);
thrust::transform(thrust::make_counting_iterator(0),
thrust::make_counting_iterator(n),
dev_sol.begin(),
struct_max(x0));
host_sol = dev_sol; //this line crashes
for (int i = 0; i < n; i++)
printf("%f\n", host_sol[i]);
}
int main() {
thrust::host_vector<float> x(n);
//magic happens populate x
for (int i = 0; i < n; i++) x[i] = rand() / (float)RAND_MAX;
cudaMemcpyToSymbol(dev_x,x.data(),n*sizeof(float));
foo(x, 0.5);
return(0);
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With