During a project in CUDA C, I came across unexpected behaviour regarding single precision and double precision floating point operations. In the project, I first fill an array with number in a kernel and in another kernel, I do some computation on these numbers. All variables and arrays are double precision, so I would not expect any single precision floating point operation to happen. However, if I analyze the executable of the program using NVPROF, it shows that single precision operations are executed. How is this possible?
Here is the smallest program, that shows this behaviour on my architecture: (asserts and error catching has been left out). I use a Nvidia Tesla k40 graphics card.
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define Nx 10
#define Ny 10
#define RANDOM double(0.236954587566)
__global__ void test(double *array, size_t pitch){
double rho, u;
int x = threadIdx.x + blockDim.x*blockIdx.x;
int y = threadIdx.y + blockDim.y*blockIdx.y;
int idx = y*(pitch/sizeof(double)) + 2*x;
if(x < Nx && y < Ny){
rho = array[idx];
u = array[idx+1]/rho;
array[idx] = rho*u;
}
}
__global__ void fill(double *array, size_t pitch){
int x = threadIdx.x + blockIdx.x * blockDim.x;
int y = threadIdx.y + blockIdx.y * blockDim.y;
int idx = y*(pitch/sizeof(double)) + 2*x;
if(x < Nx || y < Ny){
array[idx] = RANDOM*idx;
array[idx + 1] = idx*idx*RANDOM;
}
}
int main(int argc, char* argv[]) {
double *d_array;
size_t pitch;
cudaMallocPitch((void **) &d_array, &pitch, 2*Nx*sizeof(double), Ny);
dim3 threadDistribution = dim3(8,8);
dim3 blockDistribution = dim3( (Nx + threadDistribution.x - 1) / (threadDistribution.x), (Ny + threadDistribution.y) / (threadDistribution.y));
fill <<< blockDistribution, threadDistribution >>> (d_array, pitch);
cudaDeviceSynchronize();
test <<< blockDistribution, threadDistribution >>> (d_array, pitch);
return 0;
}
The output of NVPROF (edited to make it more readable, if you need the full output, just ask in the comments):
....
Device "Tesla K40c (0)"
Kernel: test(double*, unsigned long)
Metric Name Min Max Avg
flop_count_sp 198 198 198
flop_count_sp_add 0 0 0
flop_count_sp_mul 0 0 0
flop_count_sp_fma 99 99 99
flop_count_sp_special 102 102 102
flop_count_dp 1214 1214 1214
flop_count_dp_add 0 0 0
flop_count_dp_mul 204 204 204
flop_count_dp_fma 505 505 505
I found that if I delete the division in line 16:
u = array[idx+1]/rho;
==>
u = array[idx+1];
the output is as expected: zero single precision operations and exactly 100 double precision operations are executed. Does anyone know why the division causes the program to use single precision flop and 10 times more double precision floating point operations? I've also tried using intrinsics (__ddiv_rn), but this didn't solve the problem.
Many thanks in advance!
Altough I still haven't figured out why it uses the single precision, I have found a 'solution' to this problem, thanks to @EOF. Replacing the division by multiplication with the reciprocal of rho did the job:
u = array[idx+1]/rho;
==>
u = array[idx+1]*__drcp_rn(rho);
As others have pointed out, CUDA devices do not have instructions for floating point division in hardware. Instead they start from an initial approximation to the reciprocal of the denominator, provided by a single precision special function unit. It's product with the numerator is then iteratively refined until it matches the fraction to within machine precision.
Even the __ddiv_rn()
intrinsic is compiled to this instruction sequence by ptxas, so it's use makes no difference.
You can gain closer insight by inspecting the code yourself using cuobjdump -sass
, although this is made difficult by no official documentation for shader assembly being available other than the bare list of instructions.
I'll use the following bare-bones division kernel as an example:
__global__ void div(double x, double y, double *z) {
*z = x / y;
}
This is compiled to the following shader assembly for a compute capability 3.5 device:
Function : _Z3divddPd
.headerflags @"EF_CUDA_SM35 EF_CUDA_PTX_SM(EF_CUDA_SM35)"
/* 0x08a0109c10801000 */
/*0008*/ MOV R1, c[0x0][0x44]; /* 0x64c03c00089c0006 */
/*0010*/ MOV R0, c[0x0][0x14c]; /* 0x64c03c00299c0002 */
/*0018*/ MOV32I R2, 0x1; /* 0x74000000009fc00a */
/*0020*/ MOV R8, c[0x0][0x148]; /* 0x64c03c00291c0022 */
/*0028*/ MOV R9, c[0x0][0x14c]; /* 0x64c03c00299c0026 */
/*0030*/ MUFU.RCP64H R3, R0; /* 0x84000000031c000e */
/*0038*/ MOV32I R0, 0x35b7333; /* 0x7401adb9999fc002 */
/* 0x08a080a080a4a4a4 */
/*0048*/ DFMA R4, -R8, R2, c[0x2][0x0]; /* 0x9b880840001c2012 */
/*0050*/ DFMA R4, R4, R4, R4; /* 0xdb801000021c1012 */
/*0058*/ DFMA R4, R4, R2, R2; /* 0xdb800800011c1012 */
/*0060*/ DMUL R6, R4, c[0x0][0x140]; /* 0x64000000281c101a */
/*0068*/ FSETP.GE.AND P0, PT, R0, |c[0x0][0x144]|, PT; /* 0x5db09c00289c001e */
/*0070*/ DFMA R8, -R8, R6, c[0x0][0x140]; /* 0x9b881800281c2022 */
/*0078*/ MOV R2, c[0x0][0x150]; /* 0x64c03c002a1c000a */
/* 0x0880acb0a0ac8010 */
/*0088*/ MOV R3, c[0x0][0x154]; /* 0x64c03c002a9c000e */
/*0090*/ DFMA R4, R8, R4, R6; /* 0xdb801800021c2012 */
/*0098*/ @P0 BRA 0xb8; /* 0x120000000c00003c */
/*00a0*/ FFMA R0, RZ, c[0x0][0x14c], R5; /* 0x4c001400299ffc02 */
/*00a8*/ FSETP.GT.AND P0, PT, |R0|, c[0x2][0x8], PT; /* 0x5da01c40011c021e */
/*00b0*/ @P0 BRA 0xe8; /* 0x120000001800003c */
/*00b8*/ MOV R4, c[0x0][0x140]; /* 0x64c03c00281c0012 */
/* 0x08a1b810b8008010 */
/*00c8*/ MOV R5, c[0x0][0x144]; /* 0x64c03c00289c0016 */
/*00d0*/ MOV R7, c[0x0][0x14c]; /* 0x64c03c00299c001e */
/*00d8*/ MOV R6, c[0x0][0x148]; /* 0x64c03c00291c001a */
/*00e0*/ CAL 0xf8; /* 0x1300000008000100 */
/*00e8*/ ST.E.64 [R2], R4; /* 0xe5800000001c0810 */
/*00f0*/ EXIT; /* 0x18000000001c003c */
/*00f8*/ LOP32I.AND R0, R7, 0x40000000; /* 0x20200000001c1c00 */
/* 0x08a08010a010b010 */
/*0108*/ MOV32I R15, 0x1ff00000; /* 0x740ff800001fc03e */
/*0110*/ ISETP.LT.U32.AND P0, PT, R0, c[0x2][0xc], PT; /* 0x5b101c40019c001e */
/*0118*/ MOV R8, RZ; /* 0xe4c03c007f9c0022 */
/*0120*/ SEL R9, R15, c[0x2][0x10], !P0; /* 0x65002040021c3c26 */
/*0128*/ MOV32I R12, 0x1; /* 0x74000000009fc032 */
/*0130*/ DMUL R10, R8, R6; /* 0xe4000000031c202a */
/*0138*/ LOP32I.AND R0, R5, 0x7f800000; /* 0x203fc000001c1400 */
/* 0x08a0108ca01080a0 */
/*0148*/ MUFU.RCP64H R13, R11; /* 0x84000000031c2c36 */
/*0150*/ DFMA R16, -R10, R12, c[0x2][0x0]; /* 0x9b883040001c2842 */
/*0158*/ ISETP.LT.U32.AND P0, PT, R0, c[0x2][0x14], PT; /* 0x5b101c40029c001e */
/*0160*/ MOV R14, RZ; /* 0xe4c03c007f9c003a */
/*0168*/ DFMA R16, R16, R16, R16; /* 0xdb804000081c4042 */
/*0170*/ SEL R15, R15, c[0x2][0x10], !P0; /* 0x65002040021c3c3e */
/*0178*/ SSY 0x3a0; /* 0x1480000110000000 */
/* 0x08acb4a4a4a4a480 */
/*0188*/ DMUL R14, R14, R4; /* 0xe4000000021c383a */
/*0190*/ DFMA R12, R16, R12, R12; /* 0xdb803000061c4032 */
/*0198*/ DMUL R16, R14, R12; /* 0xe4000000061c3842 */
/*01a0*/ DFMA R10, -R10, R16, R14; /* 0xdb883800081c282a */
/*01a8*/ DFMA R10, R10, R12, R16; /* 0xdb804000061c282a */
/*01b0*/ DSETP.LEU.AND P0, PT, |R10|, RZ, PT; /* 0xdc581c007f9c2a1e */
/*01b8*/ @!P0 BRA 0x1e0; /* 0x120000001020003c */
/* 0x088010b010b8acb4 */
/*01c8*/ DSETP.EQ.AND P0, PT, R10, RZ, PT; /* 0xdc101c007f9c281e */
/*01d0*/ @!P0 BRA 0x358; /* 0x12000000c020003c */
/*01d8*/ DMUL.S R8, R4, R6; /* 0xe4000000035c1022 */
/*01e0*/ ISETP.GT.U32.AND P0, PT, R0, c[0x2][0x18], PT; /* 0x5b401c40031c001e */
/*01e8*/ MOV32I R0, 0x1ff00000; /* 0x740ff800001fc002 */
/*01f0*/ MOV R14, RZ; /* 0xe4c03c007f9c003a */
/*01f8*/ SEL R15, R0, c[0x2][0x10], !P0; /* 0x65002040021c003e */
/* 0x08b4a49c849c849c */
/*0208*/ DMUL R12, R10, R8; /* 0xe4000000041c2832 */
/*0210*/ DMUL R18, R10, R14; /* 0xe4000000071c284a */
/*0218*/ DMUL R10, R12, R14; /* 0xe4000000071c302a */
/*0220*/ DMUL R16, R8, R18; /* 0xe4000000091c2042 */
/*0228*/ DFMA R8, R10, R6, -R4; /* 0xdb901000031c2822 */
/*0230*/ DFMA R12, R16, R6, -R4; /* 0xdb901000031c4032 */
/*0238*/ DSETP.GT.AND P0, PT, |R8|, |R12|, PT; /* 0xdc209c00061c221e */
/* 0x08b010ac10b010a0 */
/*0248*/ SEL R9, R17, R11, P0; /* 0xe5000000059c4426 */
/*0250*/ FSETP.GTU.AND P1, PT, |R9|, 1.469367938527859385e-39, PT; /* 0xb5e01c00801c263d */
/*0258*/ MOV R11, R9; /* 0xe4c03c00049c002e */
/*0260*/ SEL R8, R16, R10, P0; /* 0xe5000000051c4022 */
/*0268*/ @P1 NOP.S; /* 0x8580000000443c02 */
/*0270*/ FSETP.LT.AND P0, PT, |R5|, 1.5046327690525280102e-36, PT; /* 0xb5881c20001c161d */
/*0278*/ MOV32I R0, 0x3ff00000; /* 0x741ff800001fc002 */
/* 0x0880a48090108c10 */
/*0288*/ MOV R16, RZ; /* 0xe4c03c007f9c0042 */
/*0290*/ SEL R17, R0, c[0x2][0x1c], !P0; /* 0x65002040039c0046 */
/*0298*/ LOP.OR R10, R8, 0x1; /* 0xc2001000009c2029 */
/*02a0*/ LOP.AND R8, R8, -0x2; /* 0xca0003ffff1c2021 */
/*02a8*/ DMUL R4, R16, R4; /* 0xe4000000021c4012 */
/*02b0*/ DMUL R6, R16, R6; /* 0xe4000000031c401a */
/*02b8*/ DFMA R14, R10, R6, -R4; /* 0xdb901000031c283a */
/* 0x08b010b010a0b4a4 */
/*02c8*/ DFMA R12, R8, R6, -R4; /* 0xdb901000031c2032 */
/*02d0*/ DSETP.GT.AND P0, PT, |R12|, |R14|, PT; /* 0xdc209c00071c321e */
/*02d8*/ SEL R8, R10, R8, P0; /* 0xe5000000041c2822 */
/*02e0*/ LOP.AND R0, R8, 0x1; /* 0xc2000000009c2001 */
/*02e8*/ IADD R11.CC, R8, -0x1; /* 0xc88403ffff9c202d */
/*02f0*/ ISETP.EQ.U32.AND P0, PT, R0, 0x1, PT; /* 0xb3201c00009c001d */
/*02f8*/ IADD.X R0, R9, -0x1; /* 0xc88043ffff9c2401 */
/* 0x08b4a480a010b010 */
/*0308*/ SEL R10, R11, R8, !P0; /* 0xe5002000041c2c2a */
/*0310*/ @P0 IADD R8.CC, R8, 0x1; /* 0xc084000000802021 */
/*0318*/ SEL R11, R0, R9, !P0; /* 0xe5002000049c002e */
/*0320*/ @P0 IADD.X R9, R9, RZ; /* 0xe08040007f802426 */
/*0328*/ DFMA R14, R10, R6, -R4; /* 0xdb901000031c283a */
/*0330*/ DFMA R4, R8, R6, -R4; /* 0xdb901000031c2012 */
/*0338*/ DSETP.GT.AND P0, PT, |R4|, |R14|, PT; /* 0xdc209c00071c121e */
/* 0x08b4acb4a010b810 */
/*0348*/ SEL R8, R10, R8, P0; /* 0xe5000000041c2822 */
/*0350*/ SEL.S R9, R11, R9, P0; /* 0xe500000004dc2c26 */
/*0358*/ MOV R8, RZ; /* 0xe4c03c007f9c0022 */
/*0360*/ MUFU.RCP64H R9, R7; /* 0x84000000031c1c26 */
/*0368*/ DSETP.GT.AND P0, PT, |R8|, RZ, PT; /* 0xdc201c007f9c221e */
/*0370*/ @P0 BRA.U 0x398; /* 0x120000001000023c */
/*0378*/ @!P0 DSETP.NEU.AND P1, PT, |R6|, +INF , PT; /* 0xb4681fff80201a3d */
/* 0x0800b8a010ac0010 */
/*0388*/ @!P0 SEL R9, R7, R9, P1; /* 0xe500040004a01c26 */
/*0390*/ @!P0 SEL R8, R6, RZ, P1; /* 0xe50004007fa01822 */
/*0398*/ DMUL.S R8, R8, R4; /* 0xe4000000025c2022 */
/*03a0*/ MOV R4, R8; /* 0xe4c03c00041c0012 */
/*03a8*/ MOV R5, R9; /* 0xe4c03c00049c0016 */
/*03b0*/ RET; /* 0x19000000001c003c */
/*03b8*/ BRA 0x3b8; /* 0x12007ffffc1c003c */
The MUFU.RCP64H
instruction provides the initial approximation of the reciprocal. It operates on the high 32 bits of the denominator (y
) and provides the high 32 bits of the double precision approximation, and therefor is counted as a Floating Point Operations (Single Precision Special) by the profiler.
There is another single precision FFMA
instruction further down apparently used as a high-throughput version of testing a conditional where full precision isn't required.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With