I have .txt
files in a directory of format <text>\t<label>
. I am using the TextLineDataset
API to consume these text records:
filenames = ["/var/data/file1.txt", "/var/data/file2.txt"]
dataset = tf.contrib.data.Dataset.from_tensor_slices(filenames)
dataset = dataset.flat_map(
lambda filename: (
tf.contrib.data.TextLineDataset(filename)
.map(_parse_data)))
def _parse_data(line):
line_split = tf.string_split([line], '\t')
features = {"raw_text": tf.string(line_split.values[0].strip().lower()),
"label": tf.string_to_number(line_split.values[1],
out_type=tf.int32)}
parsed_features = tf.parse_single_example(line, features)
return parsed_features["raw_text"], raw_features["label"]
I would like to do some string cleaning/processing on the raw_text feature. When I try to run line_split.values[0].strip().lower()
, I get the following error:
AttributeError: 'Tensor' object has no attribute 'strip'
The object lines_split.values[0]
is a tf.Tensor
object representing the 0th split from line
. It is not a Python string, and so it does not have a .strip()
or .lower()
method. Instead you will have to apply TensorFlow operations to the tensor to perform the conversion.
TensorFlow currently doesn't have very many string operations, but you can use the tf.py_func()
op to run some Python code on a tf.Tensor
:
def _parse_data(line):
line_split = tf.string_split([line], '\t')
raw_text = tf.py_func(
lambda x: x.strip().lower(), line_split.values[0], tf.string)
label = tf.string_to_number(line_split.values[1], out_type=tf.int32)
return {"raw_text": raw_text, "label": label}
Note that there are a couple of other problems with the code in the question:
tf.parse_single_example()
. This op is only used for parsing tf.train.Example
protocol buffer strings; you do not need to use it when parsing text, and you can return the extracted features directly from _parse_data()
.dataset.map()
instead of dataset.flat_map()
. You only need to use flat_map()
when the result of your mapping function is a Dataset
object (and hence the return values need to be flattened into a single dataset). You must use map()
when the result is one or more tf.Tensor
objects.If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With