I am trying to learn how to work with tensorflow summary writers by following the HowTo mnist tutorial. That tutorial adds a scalar summary for the loss function. I wrote a loss function in an unusual by building up a regularization term, and I get this exception:
W tensorflow/core/common_runtime/executor.cc:1027] 0x1e9ab70 Compute status: Invalid argument: tags and values not the same shape: [] != [1]
[[Node: ScalarSummary = ScalarSummary[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](ScalarSummary/tags, loss)]]
The loss function and adding the summary look like
loss = tf.add(modelError, regularizationTerm, name='loss')
tf.scalar_summary(loss.op.name, loss)
and if I build up the regularizationTerm like this
regularizationTerm = tf.Variable(tf.zeros([1], dtype=np.float32), name='regterm')
regularizationTerm += tf.mul(2.0, regA)
regularizationTerm += tf.mul(3.0, regB)
were regA and regB are tf.Variables previously defined, I get the exception, whereas is I build it up like
regularizationTerm = tf.add(tf.mul(2.0, regA), tf.mul(3.0, regB), name='regterm')
then it works. So I guess I am not setting the name correctly, when I do the += I create a new tensor that is unamed? But why can't I add that into the loss, and then name the loss? That is the only thing I am trying to summarize?
Is there something like += where I can name the output, or preserve the name of the tensor I am modifying?
In case the issue is related to something else, here is my simple example where I identified the problem:
import numpy as np
import tensorflow as tf
def main():
x_input = tf.placeholder(tf.float32, shape=(None, 1))
y_output = tf.placeholder(tf.float32, shape=(None, 1))
hidden_weights = tf.Variable(tf.truncated_normal([1,10], stddev=0.1), name='weights')
output_weights = tf.Variable(tf.truncated_normal([10,1], stddev=0.1), name='output')
inference = tf.matmul(tf.matmul(x_input, hidden_weights), output_weights)
regA = tf.reduce_sum(tf.pow(hidden_weights, 2))
regB = tf.reduce_sum(tf.pow(output_weights, 2))
modelError = tf.reduce_mean(tf.pow(tf.sub(inference,y_output),2), name='model-error')
fail = True
if fail:
regularizationTerm = tf.Variable(tf.zeros([1], dtype=np.float32), name='regterm')
regularizationTerm += tf.mul(2.0, regA)
regularizationTerm += tf.mul(3.0, regB)
else:
regularizationTerm = tf.add(tf.mul(2.0, regA), tf.mul(3.0, regB), name='regterm')
loss = tf.add(modelError, regularizationTerm, name='loss')
tf.scalar_summary(loss.op.name, loss)
optimizer = tf.train.GradientDescentOptimizer(0.05)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
summary_op = tf.merge_all_summaries()
saver = tf.train.Saver()
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
summary_writer = tf.train.SummaryWriter('train_dir',
graph_def=sess.graph_def)
feed_dict = {x_input:np.ones((30,1), dtype=np.float32),
y_output:np.ones((30,1), dtype=np.float32)}
for step in xrange(1000):
_, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)
if step % 100 == 0:
print( "step=%d loss=%.2f" % (step, loss_value))
summary_str = sess.run(summary_op, feed_dict=feed_dict)
summary_writer.add_summary(summary_str, step)
if __name__ == '__main__':
main()
TL;DR: The problem is the shape of the argument to tf.scalar_summary()
, not the names.
I think the problem is a shape-related issue, stemming from this line:
regularizationTerm = tf.Variable(tf.zeros([1], dtype=np.float32), name='regterm')
This defines a variable whose shape is a vector of length 1. The subsequent +=
operators (which are syntactic sugar for tf.add()
) and the tf.add()
to compute loss
will produce vector-shaped results, because tf.add()
broadcasts the scalar argument to become a vector. Finally, tf.scalar_summary()
expects its two arguments to have the same shape—unlike the broadcasting add
, tf.scalar_summary()
is not permissive about the shapes of its inputs. The tags
input is a scalar string (the name of the loss
op) whereas the values
input is a vector of length one (the value of the loss
tensor). Therefore you get the error that you reported.
Fortunately, the solution is simple! Either define the regularizationTerm
variable as a scalar, like so:
# Note that `[]` is the scalar shape.
regularizationTerm = tf.Variable(tf.zeros([], dtype=np.float32), name='regterm')
...or pass a vector (of length 1) of strings to tf.scalar_summary()
:
# Wrap `loss.op.name` in a list to make it a vector.
tf.scalar_summary([loss.op.name], loss)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With