Does anyone know how to extract the top n largest values per row of a rank 2 tensor?
For instance, if I wanted the top 2 values of a tensor of shape [2,4] with values:
[[40, 30, 20, 10], [10, 20, 30, 40]]
The desired condition matrix would look like: [[True, True, False, False],[False, False, True, True]]
Once I have the condition matrix, I can use tf.select to choose actual values.
Thank you for assistance!
You can do it using built-in tf.nn.top_k function:
a = tf.convert_to_tensor([[40, 30, 20, 10], [10, 20, 30, 40]])
b = tf.nn.top_k(a, 2)
print(sess.run(b))
TopKV2(values=array([[40, 30],
[40, 30]], dtype=int32), indices=array([[0, 1],
[3, 2]], dtype=int32))
print(sess.run(b).values))
array([[40, 30],
[40, 30]], dtype=int32)
To get boolean True/False
values, you can first get the k-th value and then use tf.greater_equal
:
kth = tf.reduce_min(b.values)
top2 = tf.greater_equal(a, kth)
print(sess.run(top2))
array([[ True, True, False, False],
[False, False, True, True]], dtype=bool)
you can also use tf.contrib.framework.argsort
a = [[40, 30, 20, 10], [10, 20, 30, 40]]
idx = tf.contrib.framework.argsort(a, direction='DESCENDING') # sorted indices
ranks = tf.contrib.framework.argsort(idx, direction='ASCENDING') # ranks
b = ranks < 2
# [[ True True False False] [False False True True]]
Moreover, you can replace 2
with a 1d tensor so that each row/column can have different n
values.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With