I am trying to implement multivariate linear regression in Python using TensorFlow, but have run into some logical and implementation issues. My code throws the following error:
Attempting to use uninitialized value Variable
Caused by op u'Variable/read'
Ideally the weights
output should be [2, 3]
def hypothesis_function(input_2d_matrix_trainingexamples,
output_matrix_of_trainingexamples,
initial_parameters_of_hypothesis_function,
learning_rate, num_steps):
# calculate num attributes and num examples
number_of_attributes = len(input_2d_matrix_trainingexamples[0])
number_of_trainingexamples = len(input_2d_matrix_trainingexamples)
#Graph inputs
x = []
for i in range(0, number_of_attributes, 1):
x.append(tf.placeholder("float"))
y_input = tf.placeholder("float")
# Create Model and Set Model weights
parameters = []
for i in range(0, number_of_attributes, 1):
parameters.append(
tf.Variable(initial_parameters_of_hypothesis_function[i]))
#Contruct linear model
y = tf.Variable(parameters[0], "float")
for i in range(1, number_of_attributes, 1):
y = tf.add(y, tf.multiply(x[i], parameters[i]))
# Minimize the mean squared errors
loss = tf.reduce_mean(tf.square(y - y_input))
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train = optimizer.minimize(loss)
#Initialize the variables
init = tf.initialize_all_variables()
# launch the graph
session = tf.Session()
session.run(init)
for step in range(1, num_steps + 1, 1):
for i in range(0, number_of_trainingexamples, 1):
feed = {}
for j in range(0, number_of_attributes, 1):
array = [input_2d_matrix_trainingexamples[i][j]]
feed[j] = array
array1 = [output_matrix_of_trainingexamples[i]]
feed[number_of_attributes] = array1
session.run(train, feed_dict=feed)
for i in range(0, number_of_attributes - 1, 1):
print (session.run(parameters[i]))
array = [[0.0, 1.0, 2.0], [0.0, 2.0, 3.0], [0.0, 4.0, 5.0]]
hypothesis_function(array, [8.0, 13.0, 23.0], [1.0, 1.0, 1.0], 0.01, 200)
Run this:
init = tf.global_variables_initializer()
sess.run(init)
Or (depending on the version of TF that you have):
init = tf.initialize_all_variables()
sess.run(init)
It's not 100% clear from the code example, but if the list initial_parameters_of_hypothesis_function
is a list of tf.Variable
objects, then the line session.run(init)
will fail because TensorFlow isn't (yet) smart enough to figure out the dependencies in variable initialization. To work around this, you should change the loop that creates parameters
to use initial_parameters_of_hypothesis_function[i].initialized_value()
, which adds the necessary dependency:
parameters = []
for i in range(0, number_of_attributes, 1):
parameters.append(tf.Variable(
initial_parameters_of_hypothesis_function[i].initialized_value()))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With