The following code does not work because the inferred template parameter F is std::tuple
, whereas I want it to be Foo
- the former takes two template parameters and the latter takes one.
#include <tuple>
template <typename T>
using Foo = std::tuple<int, T>;
template <template <typename> class F>
void foo(F<std::string> bar) {}
void test() {
foo(Foo<std::string>());
}
Is there any way to make type inference work with the using
statement rather than turning Foo
into it's own class?
#include <tuple>
template <typename T>
class Foo {
std::tuple<int, T> bar;
};
template <template <typename> class F>
void foo(F<std::string> bar) {}
void test() {
foo(Foo<std::string>());
}
I am using C++17's std::variant
along with using to alias types that are generic on a single type and I would prefer to declare these with using
statements rather than creating wrapper classes for each one. Something like this:
// Assuming Plus, Minus, etc all exist
template <typename T>
using Operation = std::variant<Plus<T>, Minus<T>, Times<T>>;
The point of this exercise is to build a small functor library loosely based on Haskell's functor typeclass. I have defined the "typeclass" like this:
template <template <typename> class F>
class Functor {
public:
template <typename T, typename U>
static F<U> fmap(std::function<U(T)> f, F<T> functor);
};
But I also wanted to add some sugar so that you can create a general mapper that will map a function over any function type without pre-specifying the functor type:
template <typename T, typename U>
struct FMap {
FMap(std::function<U(T)> f) : f_(f) {}
template <template <typename> class F>
F<U> operator()(F<T> functor) {
return Functor<F>::fmap(f_, functor);
}
private:
std::function<U(T)> f_;
};
template <typename T, typename U>
FMap<T, U> fmap(std::function<U(T)> f) {
return FMap<T, U>(f);
}
This works well with a simple value-wrapper functor:
template <typename T>
class Value {
public:
Value(T value) : value_(value) {}
const T& value() const {
return value_;
}
private:
T value_;
};
template <>
template <typename T, typename U>
Value<U> Functor<Value>::fmap(std::function<U(T)> f, Value<T> value) {
return Value<U>(f(value.value()));
}
void test() {
std::function<std::string(int)> fn = [](int x) {
return std::to_string(x);
};
auto result = fmap(fn)(Value(42));
// result.value() == "42"
}
Now I am trying to get it to work with a more complicated type that uses std::tuple
or std::variant
like in the above example.
template <>
template <typename T, typename U>
Foo<U> Functor<Foo>::fmap(std::function<U(T)> f, Foo<T> value) {
return Foo<U>(std::get<0>(value), f(std::get<1>(value)));
}
void test() {
std::function<std::string(int)> fn = [](int x) {
return std::to_string(x);
};
// This is the desirable syntax but it doesn't build
// fmap(fn)(Foo<int>(42, 7));
// This builds but it's super ugly
fmap(fn).operator()<Foo>(Foo<int>(42, 7));
}
Based on the response by SkepticalEmpiricist below, I am thinking that type aliases may not be the way to go here and instead I will have to introduce small wrapper classes - unless there is an SFINAE approach that would get this working.
This library is mostly a curiosity and a means for me to explore some more advanced template concepts - thanks for the help!
So first attempt before we start digging for some SFINAE based trickery to try circumvent the unavoidable:
Alias templates are never deduced by template argument deduction
We could "deduce" the template arguments for the compiler ourselves like this:
#include <tuple>
template <typename T>
using Foo = std::tuple<int, T>;
template <template <typename ...> class F, typename T, typename ...Ts>
void foo(F<T, std::string, Ts...> bar) {}
void test() {
foo(Foo<std::string>());
}
So now we have it compiling for your foo(Foo<std::string>());
call with Foo
being the alias template over std::tuple
and, more importantly, foo()
is still specialized only for Foo<std::string>
.
However, to support usage simultaneously of foo()
for both the std::tuple
alias template and the wrapper class for example, we still don't have it compiling error-free. As in, if we now comment-out the tuple
-flavor Foo
and bring back in the wrapper class Foo
then calling our rewritten foo()
will not compile.
To address the issue, let's give it a try with SFINAE to the rescue and replace the last declaration of foo()
with this code:
template <template <typename ...> class F, typename T, typename ...Ts,
typename std::enable_if_t<std::is_same<F<T, Ts...>,
std::tuple<T, Ts...>>::value >* = nullptr>
void foo(F<T, std::string, Ts...> bar) {}
template <template <typename> class F>
void foo(F<std::string> bar) {}
Now you can call foo()
for instances of both wrapper class of tuple
s and alias template for tuple
s. You could implement in the same fashion for std::variant
as well.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With