I'm trying to write a template function that will handle any type of argument, including vectors, maps etc, but I'm having trouble.
template<class C>
void foo(C c);
template<>
template<class V>
void foo<std::vector<V> >(std::vector<V> v);
The compiler (g++ 4.9.2-10) will complain about this:
test.cpp:13:43: error: too many template parameter lists in declaration of ‘void foo(std::vector<V>)’
void foo<std::vector<V> >(std::vector<V> v) {
^
test.cpp:13:6: error: template-id ‘foo<std::vector<V> >’ for ‘void foo(std::vector<V>)’ does not match any template declaration
void foo<std::vector<V> >(std::vector<V> v) {
^
test.cpp:13:43: note: saw 2 ‘template<>’, need 1 for specializing a member function template
void foo<std::vector<V> >(std::vector<V> v) {
^
How can I achieve this? I also want to specialize on std::map<std::string, V>
removing the first template<> line from the specialization still doesn't work (illegal specialization)
You cannot partially specialize a function, you want to create a new overload:
template <class C>
void foo(C c);
template <class V>
void foo(std::vector<V> v); // This is a different overload, not a specialization!
Please note the difference with a partial specialization of foo
:
template <class C>
void foo(C c); // 1
template <class V>
void foo<std::vector<V>>(std::vector<V> v); // 2
Here 2
is a partial specialization of 1
, which is not allowed in C++ for function.
You may find it convenient to overload on the basis of the traits of the container.
This allows a little more flexibility in terms of accepting references, const references and r-value references while only writing the function once.
Here is a small example which implements a template foo
for anything which has a begin()
and an end()
method, except for std::strings, which gets its own version of foo
via a non-template overload:
#include <vector>
#include <map>
#include <iostream>
#include <iomanip>
// trait type to determine whether something models a range.
template<class T>
struct is_range
{
template <class Y> static auto has_begin(T*p) -> decltype(p->begin(), void(), std::true_type());
template <class Y> static auto has_begin(...) -> decltype(std::false_type());
template <class Y> static auto has_end(T*p) -> decltype(p->end(), void(), std::true_type());
template <class Y> static auto has_end(...) -> decltype(std::false_type());
static constexpr bool value = decltype(has_begin<T>(0))::value && decltype(has_end<T>(0))::value;
};
// specialised mini-functor for dealing with corner cases
template<class T>
struct emitter
{
std::ostream& operator()(std::ostream& os, const T& t) const {
return os << t;
}
};
template<class T, class U>
struct emitter<std::pair<T, U>>
{
std::ostream& operator()(std::ostream& os, const std::pair<T, U>& p) const
{
return os << "(" << p.first << ", " << p.second << ")";
}
};
// a version of foo which works for all known containers, whether temporararies or references
template<class Container,
std::enable_if_t<is_range<std::decay_t<Container>>::value and not std::is_same<std::decay_t<Container>, std::string>::value>* = nullptr
>
void foo(Container&& c)
{
// do things with c.begin(), c.end()
bool first = true;
for (auto& x : c) {
using emitter_type = emitter<std::decay_t<decltype(x)>>;
auto emit = emitter_type();
if (first) {
first = false;
} else {
std::cout << ", ";
}
emit(std::cout, x);
}
std::cout << std::endl;
}
// overload for std string
void foo(const std::string& s)
{
std::cout << std::quoted(s) << std::endl;
}
int main()
{
using namespace std::literals;
foo(std::map<std::string, std::string> {
{
{ { "foo" }, { "bar" } },
{ { "aaaa" }, { "bbbbb" } }
}
});
foo(std::vector<std::string> {
{ "foo" },
{ "bar" },
{ "xxxx" },
{ "yyyy" } });
foo("hello"s);
}
expected output:
(aaaa, bbbbb), (foo, bar)
foo, bar, xxxx, yyyy
"hello"
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With