Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Sum across multiple columns with dplyr

Tags:

r

dplyr

My question involves summing up values across multiple columns of a data frame and creating a new column corresponding to this summation using dplyr. The data entries in the columns are binary(0,1). I am thinking of a row-wise analog of the summarise_each or mutate_each function of dplyr. Below is a minimal example of the data frame:

library(dplyr)
df=data.frame(
  x1=c(1,0,0,NA,0,1,1,NA,0,1),
  x2=c(1,1,NA,1,1,0,NA,NA,0,1),
  x3=c(0,1,0,1,1,0,NA,NA,0,1),
  x4=c(1,0,NA,1,0,0,NA,0,0,1),
  x5=c(1,1,NA,1,1,1,NA,1,0,1))

> df
   x1 x2 x3 x4 x5
1   1  1  0  1  1
2   0  1  1  0  1
3   0 NA  0 NA NA
4  NA  1  1  1  1
5   0  1  1  0  1
6   1  0  0  0  1
7   1 NA NA NA NA
8  NA NA NA  0  1
9   0  0  0  0  0
10  1  1  1  1  1

I could use something like:

df <- df %>% mutate(sumrow= x1 + x2 + x3 + x4 + x5)

but this would involve writing out the names of each of the columns. I have like 50 columns. In addition, the column names change at different iterations of the loop in which I want to implement this operation so I would like to try avoid having to give any column names.

How can I do that most efficiently? Any assistance would be greatly appreciated.

like image 346
amo Avatar asked Sep 28 '22 05:09

amo


People also ask

How do I sum across rows in R dplyr?

Syntax: mutate(new-col-name = rowSums(.)) The rowSums() method is used to calculate the sum of each row and then append the value at the end of each row under the new column name specified. The argument . is used to apply the function over all the cells of the data frame.

How do I sum across observations in R?

The rowSums() function in R can be used to calculate the sum of the values in each row of a matrix or data frame in R. where: x: Name of the matrix or data frame.


1 Answers

dplyr >= 1.0.0 using across

sum up each row using rowSums (rowwise works for any aggreation, but is slower)

df %>%
   replace(is.na(.), 0) %>%
   mutate(sum = rowSums(across(where(is.numeric))))

sum down each column

df %>%
   summarise(across(everything(), ~ sum(., is.na(.), 0)))

dplyr < 1.0.0

sum up each row

df %>%
   replace(is.na(.), 0) %>%
   mutate(sum = rowSums(.[1:5]))

sum down each column using superseeded summarise_all:

df %>%
   replace(is.na(.), 0) %>%
   summarise_all(funs(sum))
like image 193
Boern Avatar answered Oct 19 '22 00:10

Boern