So I have this university assignment to solve Sudoku... I read about Algorithm X and Dancing algorithm, but they didn't help me.
I need to make it with backtracking. I hard-coded some of the indexes in the two dimensional array with numbers on places given from Wikipedia (so I am sure that it's solvable).
The code I got is the following:
public void solveSudoku(int row, int col)
{
// clears the temporary storage array that is use to check if there are
// dublicates on the row/col
for (int k = 0; k < 9; k++)
{
dublicates[k] = 0;
}
// checks if the index is free and changes the input number by looping
// until suitable
if (available(row, col))
{
for (int i = 1; i < 10; i++)
{
if (checkIfDublicates(i) == true)
{
board[row][col] = i;
if (row == 8)
solveSudoku(0, col + 1);
else if (col == 8)
solveSudoku(row + 1, 0);
else
solveSudoku(row, col + 1);
board[row][col] = 0;
}
}
}
// goes to the next row/col
else
{
if (row == 8)
solveSudoku(0, col + 1);
else if (col == 8)
solveSudoku(row + 1, 0);
else
solveSudoku(row, col + 1);
}
}
/**
* Checks if the spot on the certain row-col index is free of element
*
* @param row
* @param col
* @return
*/
private boolean available(int row, int col)
{
if (board[row][col] != 0)
return false;
else
return true;
}
/**
* Checks if the number given is not already used in this row/col
*
* @param numberToCheck
* @return
*/
private boolean checkIfDublicates(int numberToCheck)
{
boolean temp = true;
for (int i = 0; i < dublicates.length; i++)
{
if (numberToCheck == dublicates[i])
{
temp = false;
return false;
}
else if (dublicates[i] == 0)
{
dublicates[i] = numberToCheck;
temp = true;
return true;
}
}
return temp;
}
I am getting StackOverflow on
// goes to the next row/col
else
{
if (row == 8)
solveSudoku(0, col + 1);
else if (col == 8)
solveSudoku(row + 1, 0);
else
solveSudoku(row, col + 1);
}
which means that I have to stop the recursion at some point, but I can't figure it out how!
If you find any other mistakes in the solve()
function - let me know. Because I am not sure I understand the "backtracking" thing completely...
You can stop recursion for example if you keep track of the current recursion depth
public void solveSudoku(int row, int col, int recursionDepth) {
// get out of here if too much
if (recursionDepth > 15) return;
// regular code...
// at some point call self with increased depth
solveSudoku(0, col + 1, recursionDepth + 1);
}
And if you find any other mistakes in the solve() function - let me know.
Too much code :)
This is roughly the way I've done this in the past.
Whenever all the definite moves have been taken and there is a choice of equally good next moves:
copy your grid data structure and push it onto a stack.
take the first candidate move and continue solving recursively
Whereever you get stuck:
pop the saved grid off the stack
take the next candidate move.
I made it in a more simple way:
public void solve(int row, int col)
{
if (row > 8)
{
printBoard();
System.out.println();
return;
}
if (board[row][col] != 0)
{
if (col < 8)
solve(row, col + 1);
else
solve(row + 1, 0);
}
else
{
for (int i = 0; i < 10; i++)
if (checkRow(row, i) && checkCol(col, i))
//&& checkSquare(row, col, i))
{
board[row][col] = i;
if (col < 8)
solve(row, col + 1);
else
solve(row + 1, 0);
}
board[row][col] = 0;
}
}
private boolean checkRow(int row, int numberToCheck)
{
for (int i = 0; i < 9; i++)
if (board[row][i] == numberToCheck)
return false;
return true;
}
private boolean checkCol(int col, int numberToCheck)
{
for (int i = 0; i < 9; i++)
if (board[i][col] == numberToCheck)
return false;
return true;
}
I'm not sure why you say that Dancing Links and Algorithm X were not useful.
Do you mean that you were not able to map Sudoku to an instance of the Exact Cover problem that Algorithm X is designed to solve?
Or that it is a too complicated approach for what you need??
If the former is the case, you might want to look at: A Sudoku Solver in Java implementing Knuth’s Dancing Links Algorithm. It's quite clear and explains also the reasoning behind.
N.B. Algorithm X is a backtracking algorithm so, if that's your only requirement, you can definitely use this approach.
Hope this can help.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With