Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

subsampling every nth entry in a numpy array

People also ask

What does .all do in NumPy?

all() in Python. The numpy. all() function tests whether all array elements along the mentioned axis evaluate to True.

How do I cut a 2d NumPy array?

To slice elements from two-dimensional arrays, you need to specify both a row index and a column index as [row_index, column_index] . For example, you can use the index [1,2] to query the element at the second row, third column in precip_2002_2013 .


You can use numpy's slicing, simply start:stop:step.

>>> xs
array([1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4])
>>> xs[1::4]
array([2, 2, 2])

This creates a view of the the original data, so it's constant time. It'll also reflect changes to the original array and keep the whole original array in memory:

>>> a
array([1, 2, 3, 4, 5])
>>> b = a[::2]         # O(1), constant time
>>> b[:] = 0           # modifying the view changes original array
>>> a                  # original array is modified
array([0, 2, 0, 4, 0])

so if either of the above things are a problem, you can make a copy explicitly:

>>> a
array([1, 2, 3, 4, 5])
>>> b = a[::2].copy()  # explicit copy, O(n)
>>> b[:] = 0           # modifying the copy
>>> a                  # original is intact
array([1, 2, 3, 4, 5])

This isn't constant time, but the result isn't tied to the original array. The copy also contiguous in memory, which can make some operations on it faster.