I'm trying to figure out the best way of producing a JSON file from R. I have the following dataframe tmp
in R
.
> tmp
gender age welcoming proud tidy unique
1 1 30 4 4 4 4
2 2 34 4 2 4 4
3 1 34 5 3 4 5
4 2 33 2 3 2 4
5 2 28 4 3 4 4
6 2 26 3 2 4 3
The output of dput(tmp)
is as follows:
tmp <- structure(list(gender = c(1L, 2L, 1L, 2L, 2L, 2L), age = c(30,
34, 34, 33, 28, 26), welcoming = c(4L, 4L, 5L, 2L, 4L, 3L), proud = c(4L,
2L, 3L, 3L, 3L, 2L), tidy = c(4L, 4L, 4L, 2L, 4L, 4L), unique = c(4L,
4L, 5L, 4L, 4L, 3L)), .Names = c("gender", "age", "welcoming",
"proud", "tidy", "unique"), na.action = structure(c(15L, 39L,
60L, 77L, 88L, 128L, 132L, 172L, 272L, 304L, 305L, 317L, 328L,
409L, 447L, 512L, 527L, 605L, 618L, 657L, 665L, 670L, 708L, 709L,
729L, 746L, 795L, 803L, 826L, 855L, 898L, 911L, 957L, 967L, 983L,
984L, 988L, 1006L, 1161L, 1162L, 1224L, 1245L, 1256L, 1257L,
1307L, 1374L, 1379L, 1386L, 1387L, 1394L, 1401L, 1408L, 1434L,
1446L, 1509L, 1556L, 1650L, 1717L, 1760L, 1782L, 1814L, 1847L,
1863L, 1909L, 1930L, 1971L, 2004L, 2022L, 2055L, 2060L, 2065L,
2082L, 2109L, 2121L, 2145L, 2158L, 2159L, 2226L, 2227L, 2281L
), .Names = c("15", "39", "60", "77", "88", "128", "132", "172",
"272", "304", "305", "317", "328", "409", "447", "512", "527",
"605", "618", "657", "665", "670", "708", "709", "729", "746",
"795", "803", "826", "855", "898", "911", "957", "967", "983",
"984", "988", "1006", "1161", "1162", "1224", "1245", "1256",
"1257", "1307", "1374", "1379", "1386", "1387", "1394", "1401",
"1408", "1434", "1446", "1509", "1556", "1650", "1717", "1760",
"1782", "1814", "1847", "1863", "1909", "1930", "1971", "2004",
"2022", "2055", "2060", "2065", "2082", "2109", "2121", "2145",
"2158", "2159", "2226", "2227", "2281"), class = "omit"), row.names = c(NA,
6L), class = "data.frame")
Using the rjson
package, I run the line toJSON(tmp)
which produces the following JSON file:
{"gender":[1,2,1,2,2,2],
"age":[30,34,34,33,28,26],
"welcoming":[4,4,5,2,4,3],
"proud":[4,2,3,3,3,2],
"tidy":[4,4,4,2,4,4],
"unique":[4,4,5,4,4,3]}
I also experimented with the RJSONIO
package; the output of toJSON()
was the same. What I would like to produce is the following structure:
{"traits":["gender","age","welcoming","proud", "tidy", "unique"],
"values":[
{"gender":1,"age":30,"welcoming":4,"proud":4,"tidy":4, "unique":4},
{"gender":2,"age":34,"welcoming":4,"proud":2,"tidy":4, "unique":4},
....
]
I'm not sure how best to do this. I realize that I can parse it line by line using python
but I feel like there is probably a better way of doing this. I also realize that my data structure in R
does not reflect the meta-information desired in my JSON
file (specifically the traits
line), but I am mainly interested in producing the data formatted like the line
{"gender":1,"age":30,"welcoming":4,"proud":4,"tidy":4, "unique":4}
as I can manually add the first line.
EDIT: I found a useful blog post where the author dealt with a similar problem and provided a solution. This function produces a formatted JSON file from a data frame.
toJSONarray <- function(dtf){
clnms <- colnames(dtf)
name.value <- function(i){
quote <- '';
# if(class(dtf[, i])!='numeric'){
if(class(dtf[, i])!='numeric' && class(dtf[, i])!= 'integer'){ # I modified this line so integers are also not enclosed in quotes
quote <- '"';
}
paste('"', i, '" : ', quote, dtf[,i], quote, sep='')
}
objs <- apply(sapply(clnms, name.value), 1, function(x){paste(x, collapse=', ')})
objs <- paste('{', objs, '}')
# res <- paste('[', paste(objs, collapse=', '), ']')
res <- paste('[', paste(objs, collapse=',\n'), ']') # added newline for formatting output
return(res)
}
The key-map to auto-format the selected JSON is ALT-SHIFT-F. This is the same key-map to auto-format other languages too, so I often find myself doing CTRL-A (for select all text) followed by ALT-SHIFT-F to fix my messy C# code after a series of cut and paste operations.
Character Encodings. The RFC recommends that JSON be represented using either UTF-8, UTF-16, or UTF-32, with UTF-8 being the default. Accordingly, this module uses UTF-8 as the default for its encoding parameter.
Building upon Andrie's idea with apply
, you can get exactly what you want by modifying the tmp
variable before calling toJSON
.
library(RJSONIO)
modified <- list(
traits = colnames(tmp),
values = unname(apply(tmp, 1, function(x) as.data.frame(t(x))))
)
cat(toJSON(modified))
Using the package jsonlite
:
> jsonlite::toJSON(list(traits = names(tmp), values = tmp), pretty = TRUE)
{
"traits": ["gender", "age", "welcoming", "proud", "tidy", "unique"],
"values": [
{
"gender": 1,
"age": 30,
"welcoming": 4,
"proud": 4,
"tidy": 4,
"unique": 4
},
{
"gender": 2,
"age": 34,
"welcoming": 4,
"proud": 2,
"tidy": 4,
"unique": 4
},
{
"gender": 1,
"age": 34,
"welcoming": 5,
"proud": 3,
"tidy": 4,
"unique": 5
},
{
"gender": 2,
"age": 33,
"welcoming": 2,
"proud": 3,
"tidy": 2,
"unique": 4
},
{
"gender": 2,
"age": 28,
"welcoming": 4,
"proud": 3,
"tidy": 4,
"unique": 4
},
{
"gender": 2,
"age": 26,
"welcoming": 3,
"proud": 2,
"tidy": 4,
"unique": 3
}
]
}
Building further on Andrie and Richie's ideas, use alply
instead of apply
to avoid converting numbers to characters:
library(RJSONIO)
library(plyr)
modified <- list(
traits = colnames(tmp),
values = unname(alply(tmp, 1, identity))
)
cat(toJSON(modified))
plyr's alply
is similar to apply
but returns a list automatically; whereas without the more complicated function inside Richie Cotton's answer, apply
would return a vector or array. And those extra steps, including t
, mean that if your dataset has any non-numeric columns, the numbers will get converted to strings.
So use of alply
avoids that concern.
For example, take your tmp
dataset and add
tmp$grade <- c("A","B","C","D","E","F")
Then compare this code (with alply
) vs the other example (with apply
).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With