I'm trying to implement a simple algebraic structures hierarchy using Idris interfaces. The code is as follows:
module AlgebraicStructures
-- definition of some algebraic structures in terms of type classes
%access public export
Associative : {a : Type} -> (a -> a -> a) -> Type
Associative {a} op = (x : a) ->
(y : a) ->
(z : a) ->
(op x (op y z)) = (op (op x y) z)
Identity : {a : Type} -> (a -> a -> a) -> a -> Type
Identity op v = ((x : a) -> (op x v) = x,
(x : a) -> (op v x) = x)
Commutative : {a : Type} -> (a -> a -> a) -> Type
Commutative {a} op = (x : a) ->
(y : a) ->
(op x y) = (op y x)
infixl 4 <**>
interface IsMonoid a where
empty : a
(<**>) : a -> a -> a
assoc : Associative (<**>)
ident : Identity (<**>) empty
interface IsMonoid a => IsCommutativeMonoid a where
comm : Commutative (<**>)
But, Idris is giving this strange error message:
When checking type of constructor of AlgebraicStructures.IsCommutativeMonoid:
Can't find implementation for IsMonoid a
I believe that Idris interfaces works like Haskell's type classes. In Haskell, it should work. Am I doing something silly?
I believe it may be complaining because I don't know that there's anything that constrains the a
in the expression Commutative (<**>)
- so it doesn't know that you can invoke <**>
on that type.
Explicitly specifying the a
seems to work for me - Commutative {a} (<**>)
- I hope that that means that the a
from the interface signature is in scope and available for explicitly passing to other types.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With