I have a list of lists of dataframes, something like this:
I just edited to change the data so that the length of the list and nested list are not equal.
test <- list(list(cars1 = head(mtcars), iris1 = head(iris)),
list(cars2 = tail(mtcars), iris2 = tail(iris)),
list(cars3 = tail(mtcars), iris3 = tail(iris)))
This gives me what I want with a mix of lapply()
and purrr
.
lapply(1:2, function(x) purrr::map_dfr(test, ~ .[[x]]))
Is there a way to do this more efficiently in a single line just in purrr
? This seems like a fairly common task.
Here is an option with purrr
library(dplyr)
library(stringr)
library(purrr)
test %>%
flatten %>%
split(str_remove(names(.), '\\d+')) %>%
map(bind_rows)
#$cars
# mpg cyl disp hp drat wt qsec vs am gear carb
#1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#7 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#8 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#9 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#10 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#11 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#12 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#13 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#14 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#15 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#16 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#17 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
#18 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#$iris
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#1 5.1 3.5 1.4 0.2 setosa
#2 4.9 3.0 1.4 0.2 setosa
#3 4.7 3.2 1.3 0.2 setosa
#4 4.6 3.1 1.5 0.2 setosa
#5 5.0 3.6 1.4 0.2 setosa
#6 5.4 3.9 1.7 0.4 setosa
#7 6.7 3.3 5.7 2.5 virginica
#8 6.7 3.0 5.2 2.3 virginica
#9 6.3 2.5 5.0 1.9 virginica
#10 6.5 3.0 5.2 2.0 virginica
#11 6.2 3.4 5.4 2.3 virginica
#12 5.9 3.0 5.1 1.8 virginica
#13 6.7 3.3 5.7 2.5 virginica
#14 6.7 3.0 5.2 2.3 virginica
#15 6.3 2.5 5.0 1.9 virginica
#16 6.5 3.0 5.2 2.0 virginica
#17 6.2 3.4 5.4 2.3 virginica
#18 5.9 3.0 5.1 1.8 virginica
Or another option is
map_dfr(test, enframe) %>%
group_split(name = str_remove(name, "\\d+")) %>%
map( ~ unnest(.x, value))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With