Couldn't find a solution on the web for my problem. I am trying to insert this pandas df to a Postgresql table using SQLAlchemy
Relevant part of my code is below:
engine = create_engine('postgresql://user:pass@host:5432/db')
file = open('GameRoundMessageBlackjackSample.json', 'r', encoding='utf-8')
json_dict = json.load(file)
df = json_normalize(json_dict, record_path='cards', meta=['bet', 'dealerId', 'dealerName', 'gameOutcome', 'gameRoundDuration', 'gameRoundId', 'gameType', 'tableId', 'win'])
df = df[['win', 'betAmount', 'bets']]
df.to_sql('test_netent_data', engine, if_exists='append')
When I try to load this table to sql without the column 'bets' everyting works as expected. But when I include it i get the following error:
sqlalchemy.exc.ProgrammingError: (psycopg2.ProgrammingError) can't adapt
type 'dict'
[SQL: INSERT INTO test_netent_data (index, win, "betAmount", bets) VALUES (%(index)s, %(win)s, %(betAmount)s, %(bets)s)]
[parameters: ({'index': 0, 'win': '2000.00', 'betAmount': '1212112', 'bets': [{'name': '1', 'amount': '1212112'}]}, {'index': 1, 'win': '2000.00', 'betAmount': '1212000', 'bets': [{'name': '1', 'amount': '1212000'}]}, {'index': 2, 'win': '2000.00', 'betAmount': '1212112', 'bets': [{'name': '1', 'amount': '1212112'}]}, {'index': 3, 'win': '2000.00', 'betAmount': '1212000', 'bets': [{'name': '1', 'amount': '1212000'}]}, {'index': 4, 'win': '2000.00', 'betAmount': '1212112', 'bets': [{'name': '1', 'amount': '1212112'}]}, {'index': 5, 'win': '2000.00', 'betAmount': '1212000', 'bets': [{'name': '1', 'amount': '1212000'}]}, {'index': 6, 'win': '2000.00', 'betAmount': '1212112', 'bets': [{'name': '1', 'amount': '1212112'}]}, {'index': 7, 'win': '2000.00', 'betAmount': '1212000', 'bets': [{'name': '1', 'amount': '1212000'}]})]
(Background on this error at: http://sqlalche.me/e/f405)
I have checked the type of this column but it is (type object) no different from other columns. Ive also tried to convert it to string and got a bunch of other errors. I believe there should be a simple solution which I can't get my head around.
Just use dataframe apply
df['bets'] = df['bets'].apply(json.dumps)
For me, the better way will be parse this list dict into separated columns. However if you want add column bets into SQL table you need to convert it. You wrote that this is object, but it is list with dicts. Below is code how to convert it into string:
df['bets'] = list(map(lambda x: json.dumps(x), df['bets']))
Since you're using pandas.DataFrame.to_sql
, a better alternative is to leverage the native JSON
type:
df.to_sql(
'test_netent_data',
engine,
if_exists='append',
dtype={"bets": sqlalchemy.types.JSON},
)
(inspired by https://stackoverflow.com/a/41469431/554319)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With