I'm working on an asset database that has a hierarchy. Also, there is a "ReferenceAsset" table, that effectively points back to an asset. The Reference Asset basically functions as an override, but it is selected as if it were a unique, new asset. One of the overrides that gets set, is the parent_id.
Columns that are relevant to selecting the heirarchy:
Asset: id (primary), parent_id
Asset Reference: id (primary), asset_id (foreignkey->Asset), parent_id (always an Asset)
---EDITED 5/27----
Sample Relevent Table Data (after joins):
id | asset_id | name | parent_id | milestone | type 3 3 suit null march shape 4 4 suit_banker 3 april texture 5 5 tie null march shape 6 6 tie_red 5 march texture 7 7 tie_diamond 5 june texture -5 6 tie_red 4 march texture
the id < 0 (like the last row) signify assets that are referenced. Referenced assets have a few columns that are overidden (in this case, only parent_id is important).
The expectation is that if I select all assets from april, I should do a secondary select to get the entire tree branches of the matching query:
so initially the query match would result in:
4 4 suit_banker 3 april texture
Then after the CTE, we get the complete hierarchy and our result should be this (so far this is working)
3 3 suit null march shape 4 4 suit_banker 3 april texture -5 6 tie_red 4 march texture
and you see, the parent of id:-5 is there, but what is missing, that is needed, is the referenced asset, and the parent of the referenced asset:
5 5 tie null march shape 6 6 tie_red 5 march texture
Currently my solution works for this, but it is limited to only a single depth of references (and I feel the implementation is quite ugly).
---Edited---- Here is my primary Selection Function. This should better demonstrate where the real complication lies: the AssetReference.
Select A.id as id, A.id as asset_id, A.name,A.parent_id as parent_id, A.subPath, T.name as typeName, A2.name as parent_name, B.name as batchName,
L.name as locationName,AO.owner_name as ownerName, T.id as typeID,
M.name as milestoneName, A.deleted as bDeleted, 0 as reference, W.phase_name, W.status_name
FROM Asset as A Inner Join Type as T on A.type_id = T.id
Inner Join Batch as B on A.batch_id = B.id
Left Join Location L on A.location_id = L.id
Left Join Asset A2 on A.parent_id = A2.id
Left Join AssetOwner AO on A.owner_id = AO.owner_id
Left Join Milestone M on A.milestone_id = M.milestone_id
Left Join Workflow as W on W.asset_id = A.id
where A.deleted <= @showDeleted
UNION
Select -1*AR.id as id, AR.asset_id as asset_id, A.name, AR.parent_id as parent_id, A.subPath, T.name as typeName, A2.name as parent_name, B.name as batchName,
L.name as locationName,AO.owner_name as ownerName, T.id as typeID,
M.name as milestoneName, A.deleted as bDeleted, 1 as reference, NULL as phase_name, NULL as status_name
FROM Asset as A Inner Join Type as T on A.type_id = T.id
Inner Join Batch as B on A.batch_id = B.id
Left Join Location L on A.location_id = L.id
Left Join Asset A2 on AR.parent_id = A2.id
Left Join AssetOwner AO on A.owner_id = AO.owner_id
Left Join Milestone M on A.milestone_id = M.milestone_id
Inner Join AssetReference AR on AR.asset_id = A.id
where A.deleted <= @showDeleted
I have a stored procedure that takes a temp table (#temp) and finds all the elements of the hierarchy. The strategy I employed was this:
This works for now because reference assets are always the last item on a branch, but if they weren't, i think i would be in trouble. I feel like i need some better form of recursion.
Here is my current code, which is working, but i am not proud of it, and I know it is not robust (because it only works if the references are at the bottom):
Step 1. build the entire hierarchy
;WITH Recursive_CTE AS (
SELECT Cast(id as varchar(100)) as Hierarchy, parent_id, id
FROM #assetIDs
Where parent_id is Null
UNION ALL
SELECT
CAST(parent.Hierarchy + ',' + CAST(t.id as varchar(100)) as varchar(100)) as Hierarchy, t.parent_id, t.id
FROM Recursive_CTE parent
INNER JOIN #assetIDs t ON t.parent_id = parent.id
)
Select Distinct h.id, Hierarchy as idList into #treeIDs
FROM ( Select Hierarchy, id FROM Recursive_CTE ) parent
CROSS APPLY dbo.SplitIDs(Hierarchy) as h
Step 2. Select the branches of all assets that match the query
Select DISTINCT L.id into #RelativeIDs FROM #treeIDs
CROSS APPLY dbo.SplitIDs(idList) as L
WHERE #treeIDs.id in (Select id FROM #temp)
Step 3. Get all Reference Assets in the branches (Reference assets have negative id values, hence the id < 0 part)
Select asset_id INTO #REFLinks FROM #AllAssets WHERE id in
(Select #AllAssets.asset_id FROM #AllAssets Inner Join #RelativeIDs
on #AllAssets.id = #RelativeIDs.id Where #RelativeIDs.id < 0)
Step 4. Get the branches of anything found in step 3
Select DISTINCT L.id into #extraRelativeIDs FROM #treeIDs
CROSS APPLY dbo.SplitIDs(idList) as L
WHERE
exists (Select #REFLinks.asset_id FROM #REFLinks WHERE #REFLinks.asset_id = #treeIDs.id)
and Not Exists (select id FROM #RelativeIDs Where id = #treeIDs.id)
I've tried to just show the relevant code. I am super grateful to anyone who can help me find a better solution!
Use hierarchyid as a data type to create tables with a hierarchical structure, or to describe the hierarchical structure of data that is stored in another location. Use the hierarchyid functions in Transact-SQL to query and manage hierarchical data.
The anchor member of the CTE is the first SELECT statement. By doing this, you select the root of the hierarchy; it's the basis on which the recursive query will work its magic and find all other levels of the hierarchy. This statement selects all the columns from the table employee .
For SQL to do anything with it, a parent-child tree structure has to be stored in a relational database. These structures are usually stored in one table with two ID columns, of which one references a parent object ID. That lets us determine the hierarchy between data.
--getting all of the children of a root node ( could be > 1 ) and it would require revising the query a bit
DECLARE @AssetID int = (select AssetId from Asset where AssetID is null);
--algorithm is relational recursion
--gets the top level in hierarchy we want. The hierarchy column
--will show the row's place in the hierarchy from this query only
--not in the overall reality of the row's place in the table
WITH Hierarchy(Asset_ID, AssetID, Levelcode, Asset_hierarchy)
AS
(
SELECT AssetID, Asset_ID,
1 as levelcode, CAST(Assetid as varchar(max)) as Asset_hierarchy
FROM Asset
WHERE AssetID=@AssetID
UNION ALL
--joins back to the CTE to recursively retrieve the rows
--note that treelevel is incremented on each iteration
SELECT A.Parent_ID, B.AssetID,
Levelcode + 1 as LevelCode,
A.assetID + '\' + cast(A.Asset_id as varchar(20)) as Asset_Hierarchy
FROM Asset AS a
INNER JOIN dbo.Batch AS Hierarchy
--use to get children, since the parentId of the child will be set the value
--of the current row
on a.assetId= b.assetID
--use to get parents, since the parent of the Asset_Hierarchy row will be the asset,
--not the parent.
on Asset.AssetId= Asset_Hierarchy.parentID
SELECT a.Assetid,a.name,
Asset_Hierarchy.LevelCode, Asset_Hierarchy.hierarchy
FROM Asset AS a
INNER JOIN Asset_Hierarchy
ON A.AssetID= Asset_Hierarchy.AssetID
ORDER BY Hierarchy ;
--return results from the CTE, joining to the Asset data to get the asset name
---that is the structure you will want. I would need a little more clarification of your table structure
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With