I'm having trouble understanding the behavior of the estimated query plans for my statement in SQL Server when a change from a parameterized query to a non-parameterized query.
I have the following query:
DECLARE @p0 UniqueIdentifier = '1fc66e37-6eaf-4032-b374-e7b60fbd25ea'
SELECT [t5].[value2] AS [Date], [t5].[value] AS [New]
FROM (
SELECT COUNT(*) AS [value], [t4].[value] AS [value2]
FROM (
SELECT CONVERT(DATE, [t3].[ServerTime]) AS [value]
FROM (
SELECT [t0].[CookieID]
FROM [dbo].[Usage] AS [t0]
WHERE ([t0].[CookieID] IS NOT NULL) AND ([t0].[ProductID] = @p0)
GROUP BY [t0].[CookieID]
) AS [t1]
OUTER APPLY (
SELECT TOP (1) [t2].[ServerTime]
FROM [dbo].[Usage] AS [t2]
WHERE ((([t1].[CookieID] IS NULL) AND ([t2].[CookieID] IS NULL))
OR (([t1].[CookieID] IS NOT NULL) AND ([t2].[CookieID] IS NOT NULL)
AND ([t1].[CookieID] = [t2].[CookieID])))
AND ([t2].[CookieID] IS NOT NULL)
AND ([t2].[ProductID] = @p0)
ORDER BY [t2].[ServerTime]
) AS [t3]
) AS [t4]
GROUP BY [t4].[value]
) AS [t5]
ORDER BY [t5].[value2]
This query is generated by a Linq2SQL expression and extracted from LINQPad. This produces a nice query plan (as far as I can tell) and executes in about 10 seconds on the database. However, if I replace the two uses of parameters with the exact value, that is replace the two '= @p0' parts with '= '1fc66e37-6eaf-4032-b374-e7b60fbd25ea' ' I get a different estimated query plan and the query now runs much longer (more than 60 seconds, haven't seen it through).
Why is it that performing the seemingly innocent replacement produces a much less efficient query plan and execution? I have cleared the procedure cache with 'DBCC FreeProcCache' to ensure that I was not caching a bad plan, but the behavior remains.
My real problem is that I can live with the 10 seconds execution time (at least for a good while) but I can't live with the 60+ sec execution time. My query will (as hinted above) by produced by Linq2SQL so it is executed on the database as
exec sp_executesql N'
...
WHERE ([t0].[CookieID] IS NOT NULL) AND ([t0].[ProductID] = @p0)
...
AND ([t2].[ProductID] = @p0)
...
',N'@p0 uniqueidentifier',@p0='1FC66E37-6EAF-4032-B374-E7B60FBD25EA'
which produces the same poor execution time (which I think is doubly strange since this seems to be using parameterized queries.
I'm not looking for advise on which indexes to create or the like, I'm just trying to understand why the query plan and execution are so dissimilar on three seemingly similar queries.
EDIT: I have uploaded execution plans for the non-parameterized and the parameterized query as well as an execution plan for a parameterized query (as suggested by Heinz) with a different GUID here
Hope it helps you help me :)
The major difference between Estimated vs Actual Execution Plan is that the Actual Execution plan contains additional details about the operator execution time as well as the row read from the database.
A query plan (or query execution plan) is a sequence of steps used to access data in a SQL relational database management system. This is a specific case of the relational model concept of access plans.
SQL Server Management Studio has three options to display execution plans: The Estimated Execution Plan is the compiled plan, as produced by the Query Optimizer based on estimations. This is the query plan that is stored in the plan cache. The Actual Execution Plan is the compiled plan plus its execution context.
Execution plan will be generated by Query optimizer with the help of statistics and Algebrizer\processor tree. It is the result of Query optimizer and tells how to do\perform your work\requirement. There are two different execution plans - Estimated and Actual. Estimated execution plan indicates optimizer view.
If you provide an explicit value, SQL Server can use statistics of this field to make a "better" query plan decision. Unfortunately (as I've experienced myself recently), if the information contained in the statistics is misleading, sometimes SQL Server just makes the wrong choices.
If you want to dig deeper into this issue, I recommend you to check what happens if you use other GUIDs: If it uses a different query plan for different concrete GUIDs, that's an indication that statistics data is used. In that case, you might want to look at sp_updatestats
and related commands.
EDIT: Have a look at DBCC SHOW_STATISTICS: The "slow" and the "fast" GUID are probably in different buckets in the histogram. I've had a similar problem, which I solved by adding an INDEX
table hint to the SQL, which "guides" SQL Server towards finding the "right" query plan. Basically, I've looked at what indices are used during a "fast" query and hard-coded those into the SQL. This is far from an optimal or elegant solution, but I haven't found a better one yet...
I'm not looking for advise on which indexes to create or the like, I'm just trying to understand why the query plan and execution are so dissimilar on three seemingly similar queries.
You seem to have two indexes:
IX_NonCluster_Config (ProductID, ServerTime)
IX_NonCluster_ProductID_CookieID_With_ServerTime (ProductID, CookieID) INCLUDE (ServerTime)
The first index does not cover CookieID
but is ordered on ServerTime
and hence is more efficient for the less selective ProductID
's (i. e. those that you have many)
The second index does cover all columns but is not ordered, and hence is more efficient for more selective ProductID
's (those that you have few).
In average, you ProductID
cardinality is so that SQL Server
expects the second method to be efficient, which is what it uses when you use parametrized queries or explicitly provide selective GUID
's.
However, your original GUID
is considered less selective, that's why the first method is used.
Unfortunately, the first method requires additional filtering on CookieID
which is why it's less efficient in fact.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With