The scenario is that there are n
objects, of different sizes, unevenly spread over m
buckets. The size of a bucket is the sum of all of the object sizes that it contains. It now happens that the sizes of the buckets are varying wildly.
What would be a good algorithm if I want to spread those objects evenly over those buckets so that the total size of each bucket would be about the same? It would be nice if the algorithm leaned towards less move size over a perfectly even spread.
I have this naïve, ineffective, and buggy solution in Ruby.
buckets = [ [10, 4, 3, 3, 2, 1], [5, 5, 3, 2, 1], [3, 1, 1], [2] ] avg_size = buckets.flatten.reduce(:+) / buckets.count + 1 large_buckets = buckets.take_while {|arr| arr.reduce(:+) >= avg_size}.to_a large_buckets.each do |large| smallest = buckets.last until ((small_sum = smallest.reduce(:+)) >= avg_size) break if small_sum + large.last >= avg_size smallest << large.pop end buckets.insert(0, buckets.pop) end => [[3, 1, 1, 1, 2, 3], [2, 1, 2, 3, 3], [10, 4], [5, 5]]
I believe this is a variant of the bin packing problem, and as such it is NP-hard. Your answer is essentially a variant of the first fit decreasing heuristic, which is a pretty good heuristic. That said, I believe that the following will give better results.
The idea is that by moving the largest elements in Pass1 you make it easier to more precisely match up the buckets' sizes in Pass2. You use balanced binary trees so that you can quickly re-index the buckets or the trees of buckets after removing or adding an element, but you could use linked lists instead (the balanced binary trees would have better worst-case performance but the linked lists might have better average-case performance). By performing a best-fit instead of a first-fit in Pass2 you're less likely to perform useless moves (e.g. moving a size-10 object from a bucket that's 5 greater than average into a bucket that's 5 less than average - first fit would blindly perform the movie, best-fit would either query the next "too-large bucket" for a better-sized object or else would remove the "too-small bucket" from the bucket tree).
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With