I am trying to solve this problem in Haskell but getting time limit exceed. I applied all my Haskell and mathematical skill to optimize this but all in vain. Could some one please suggest me how to optimize this code further. The sequence F_3 + F_7 + F_11 .... + F_(4n+3) = F_2n*F_(2n+1). I used O(log n) to method to calculate the Fibonacci numbers.
import Data.List
import Data.Maybe
import qualified Data.ByteString.Lazy.Char8 as BS
matmul :: [Integer] -> [Integer] -> Integer -> [Integer]
matmul [a,b,c] [d,e,f] m = [x,y,z] where
y = (a*e + b*f) `mod` m
z = (b*e + c*f) `mod` m
x = y + z
powM ::[Integer] -> Integer -> Integer -> [Integer]
powM a n m | n == 1 = a
| n == 2 = matmul a a m
| even n = powM ( matmul a a m ) ( div n 2 ) m
| otherwise = matmul a ( powM ( matmul a a m ) ( div n 2 ) m ) m
readInt :: BS.ByteString -> Integer
readInt = fst.fromJust.BS.readInteger
solve::Integer -> BS.ByteString
solve n = BS.pack.show $ mod ( c*d ) 1000000007 where
[c,d,_] = powM [1,1,0] ( 2*n ) 1000000007
--([_,a,_]:_) = powM [[1,2,1],[0,5,3],[0,3,2]] n 1000000007
-- f_3+f_7+f_11+f_15 = f_2n*f_(2n+1)
main = BS.interact $ BS.unlines. map ( solve.readInt ) . tail . BS.lines
Your solving seems to be fast enough but it seems that your main function does not print the answer after each new line. In fact it requires an extra newline to get the last answer so this can be the cause of your timeout! Here is a version that prints each answer directly after the input.
import Data.List
import Data.Maybe
import Control.Monad
import qualified Data.ByteString.Lazy.Char8 as B
import qualified Data.ByteString.Char8 as BC
import qualified Text.Show.ByteString as BS
matmul :: [Integer] -> [Integer] -> Integer -> [Integer]
matmul [a,b,c] [d,e,f] m = [x,y,z] where
y = (a*e + b*f) `mod` m
z = (b*e + c*f) `mod` m
x = y + z
powM :: [Integer] -> Integer -> Integer -> [Integer]
powM a n m | n == 1 = a
| n == 2 = matmul a a m
| even n = powM ( matmul a a m ) ( div n 2 ) m
| otherwise = matmul a ( powM ( matmul a a m ) ( div n 2 ) m ) m
solve :: Integer -> Integer
solve n = mod ( c*d ) 1000000007
where
[c,d,_] = powM [1,1,0] ( 2*n ) 1000000007
readInteger :: B.ByteString -> Integer
readInteger = fst . fromJust . B.readInteger
readInt :: B.ByteString -> Int
readInt = fst . fromJust . B.readInt
get :: IO B.ByteString
get = liftM (B.fromChunks . (:[])) BC.getLine
main :: IO ()
main = do
n <- liftM readInt get
replicateM_ n ( liftM readInteger get >>= B.putStrLn . BS.show . solve )
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With