Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Split (explode) pandas dataframe string entry to separate rows

People also ask

How do I split a string into multiple rows in pandas?

To split cell into multiple rows in a Python Pandas dataframe, we can use the apply method. to call apply with a lambda function that calls str. split to split the x string value. And then we call explode to fill new rows with the split values.

How do you explode a list inside a DataFrame cell into separate rows?

For most cases, the correct answer is to now use pandas. DataFrame. explode() as shown in this answer, or pandas. Series.

How do you explode rows in pandas?

Pandas DataFrame: explode() functionThe explode() function is used to transform each element of a list-like to a row, replicating the index values. Exploded lists to rows of the subset columns; index will be duplicated for these rows.


UPDATE 3: it makes more sense to use Series.explode() / DataFrame.explode() methods (implemented in Pandas 0.25.0 and extended in Pandas 1.3.0 to support multi-column explode) as is shown in the usage example:

for a single column:

In [1]: df = pd.DataFrame({'A': [[0, 1, 2], 'foo', [], [3, 4]],
   ...:                    'B': 1,
   ...:                    'C': [['a', 'b', 'c'], np.nan, [], ['d', 'e']]})

In [2]: df
Out[2]:
           A  B          C
0  [0, 1, 2]  1  [a, b, c]
1        foo  1        NaN
2         []  1         []
3     [3, 4]  1     [d, e]

In [3]: df.explode('A')
Out[3]:
     A  B          C
0    0  1  [a, b, c]
0    1  1  [a, b, c]
0    2  1  [a, b, c]
1  foo  1        NaN
2  NaN  1         []
3    3  1     [d, e]
3    4  1     [d, e]

for multiple columns (for Pandas 1.3.0+):

In [4]: df.explode(['A', 'C'])
Out[4]:
     A  B    C
0    0  1    a
0    1  1    b
0    2  1    c
1  foo  1  NaN
2  NaN  1  NaN
3    3  1    d
3    4  1    e

UPDATE 2: more generic vectorized function, which will work for multiple normal and multiple list columns

def explode(df, lst_cols, fill_value='', preserve_index=False):
    # make sure `lst_cols` is list-alike
    if (lst_cols is not None
        and len(lst_cols) > 0
        and not isinstance(lst_cols, (list, tuple, np.ndarray, pd.Series))):
        lst_cols = [lst_cols]
    # all columns except `lst_cols`
    idx_cols = df.columns.difference(lst_cols)
    # calculate lengths of lists
    lens = df[lst_cols[0]].str.len()
    # preserve original index values    
    idx = np.repeat(df.index.values, lens)
    # create "exploded" DF
    res = (pd.DataFrame({
                col:np.repeat(df[col].values, lens)
                for col in idx_cols},
                index=idx)
             .assign(**{col:np.concatenate(df.loc[lens>0, col].values)
                            for col in lst_cols}))
    # append those rows that have empty lists
    if (lens == 0).any():
        # at least one list in cells is empty
        res = (res.append(df.loc[lens==0, idx_cols], sort=False)
                  .fillna(fill_value))
    # revert the original index order
    res = res.sort_index()
    # reset index if requested
    if not preserve_index:        
        res = res.reset_index(drop=True)
    return res

Demo:

Multiple list columns - all list columns must have the same # of elements in each row:

In [134]: df
Out[134]:
   aaa  myid        num          text
0   10     1  [1, 2, 3]  [aa, bb, cc]
1   11     2         []            []
2   12     3     [1, 2]      [cc, dd]
3   13     4         []            []

In [135]: explode(df, ['num','text'], fill_value='')
Out[135]:
   aaa  myid num text
0   10     1   1   aa
1   10     1   2   bb
2   10     1   3   cc
3   11     2
4   12     3   1   cc
5   12     3   2   dd
6   13     4

preserving original index values:

In [136]: explode(df, ['num','text'], fill_value='', preserve_index=True)
Out[136]:
   aaa  myid num text
0   10     1   1   aa
0   10     1   2   bb
0   10     1   3   cc
1   11     2
2   12     3   1   cc
2   12     3   2   dd
3   13     4

Setup:

df = pd.DataFrame({
 'aaa': {0: 10, 1: 11, 2: 12, 3: 13},
 'myid': {0: 1, 1: 2, 2: 3, 3: 4},
 'num': {0: [1, 2, 3], 1: [], 2: [1, 2], 3: []},
 'text': {0: ['aa', 'bb', 'cc'], 1: [], 2: ['cc', 'dd'], 3: []}
})

CSV column:

In [46]: df
Out[46]:
        var1  var2 var3
0      a,b,c     1   XX
1  d,e,f,x,y     2   ZZ

In [47]: explode(df.assign(var1=df.var1.str.split(',')), 'var1')
Out[47]:
  var1  var2 var3
0    a     1   XX
1    b     1   XX
2    c     1   XX
3    d     2   ZZ
4    e     2   ZZ
5    f     2   ZZ
6    x     2   ZZ
7    y     2   ZZ

using this little trick we can convert CSV-like column to list column:

In [48]: df.assign(var1=df.var1.str.split(','))
Out[48]:
              var1  var2 var3
0        [a, b, c]     1   XX
1  [d, e, f, x, y]     2   ZZ

UPDATE: generic vectorized approach (will work also for multiple columns):

Original DF:

In [177]: df
Out[177]:
        var1  var2 var3
0      a,b,c     1   XX
1  d,e,f,x,y     2   ZZ

Solution:

first let's convert CSV strings to lists:

In [178]: lst_col = 'var1' 

In [179]: x = df.assign(**{lst_col:df[lst_col].str.split(',')})

In [180]: x
Out[180]:
              var1  var2 var3
0        [a, b, c]     1   XX
1  [d, e, f, x, y]     2   ZZ

Now we can do this:

In [181]: pd.DataFrame({
     ...:     col:np.repeat(x[col].values, x[lst_col].str.len())
     ...:     for col in x.columns.difference([lst_col])
     ...: }).assign(**{lst_col:np.concatenate(x[lst_col].values)})[x.columns.tolist()]
     ...:
Out[181]:
  var1  var2 var3
0    a     1   XX
1    b     1   XX
2    c     1   XX
3    d     2   ZZ
4    e     2   ZZ
5    f     2   ZZ
6    x     2   ZZ
7    y     2   ZZ

OLD answer:

Inspired by @AFinkelstein solution, i wanted to make it bit more generalized which could be applied to DF with more than two columns and as fast, well almost, as fast as AFinkelstein's solution):

In [2]: df = pd.DataFrame(
   ...:    [{'var1': 'a,b,c', 'var2': 1, 'var3': 'XX'},
   ...:     {'var1': 'd,e,f,x,y', 'var2': 2, 'var3': 'ZZ'}]
   ...: )

In [3]: df
Out[3]:
        var1  var2 var3
0      a,b,c     1   XX
1  d,e,f,x,y     2   ZZ

In [4]: (df.set_index(df.columns.drop('var1',1).tolist())
   ...:    .var1.str.split(',', expand=True)
   ...:    .stack()
   ...:    .reset_index()
   ...:    .rename(columns={0:'var1'})
   ...:    .loc[:, df.columns]
   ...: )
Out[4]:
  var1  var2 var3
0    a     1   XX
1    b     1   XX
2    c     1   XX
3    d     2   ZZ
4    e     2   ZZ
5    f     2   ZZ
6    x     2   ZZ
7    y     2   ZZ

After painful experimentation to find something faster than the accepted answer, I got this to work. It ran around 100x faster on the dataset I tried it on.

If someone knows a way to make this more elegant, by all means please modify my code. I couldn't find a way that works without setting the other columns you want to keep as the index and then resetting the index and re-naming the columns, but I'd imagine there's something else that works.

b = DataFrame(a.var1.str.split(',').tolist(), index=a.var2).stack()
b = b.reset_index()[[0, 'var2']] # var1 variable is currently labeled 0
b.columns = ['var1', 'var2'] # renaming var1

Pandas >= 0.25

Series and DataFrame methods define a .explode() method that explodes lists into separate rows. See the docs section on Exploding a list-like column.

Since you have a list of comma separated strings, split the string on comma to get a list of elements, then call explode on that column.

df = pd.DataFrame({'var1': ['a,b,c', 'd,e,f'], 'var2': [1, 2]})
df
    var1  var2
0  a,b,c     1
1  d,e,f     2

df.assign(var1=df['var1'].str.split(',')).explode('var1')

  var1  var2
0    a     1
0    b     1
0    c     1
1    d     2
1    e     2
1    f     2

Note that explode only works on a single column (for now). To explode multiple columns at once, see below.

NaNs and empty lists get the treatment they deserve without you having to jump through hoops to get it right.

df = pd.DataFrame({'var1': ['d,e,f', '', np.nan], 'var2': [1, 2, 3]})
df
    var1  var2
0  d,e,f     1
1            2
2    NaN     3

df['var1'].str.split(',')

0    [d, e, f]
1           []
2          NaN

df.assign(var1=df['var1'].str.split(',')).explode('var1')

  var1  var2
0    d     1
0    e     1
0    f     1
1          2  # empty list entry becomes empty string after exploding 
2  NaN     3  # NaN left un-touched

This is a serious advantage over ravel/repeat -based solutions (which ignore empty lists completely, and choke on NaNs).


Exploding Multiple Columns

Note that explode only works on a single column at a time, but you can use apply to explode multiple column at once:

df = pd.DataFrame({'var1': ['a,b,c', 'd,e,f'], 
                   'var2': ['i,j,k', 'l,m,n'], 
                   'var3': [1, 2]})
df
    var1   var2  var3
0  a,b,c  i,j,k     1
1  d,e,f  l,m,n     2

(df.set_index(['var3']) 
   .apply(lambda col: col.str.split(',').explode())
   .reset_index()
   .reindex(df.columns, axis=1))

df
  var1 var2  var3
0    a    i     1
1    b    j     1
2    c    k     1
3    d    l     2
4    e    m     2
5    f    n     2

The idea is to set as the index, all the columns that should NOT be exploded, then explode the remaining columns via apply. This works well when the lists are equally sized.


How about something like this:

In [55]: pd.concat([Series(row['var2'], row['var1'].split(','))              
                    for _, row in a.iterrows()]).reset_index()
Out[55]: 
  index  0
0     a  1
1     b  1
2     c  1
3     d  2
4     e  2
5     f  2

Then you just have to rename the columns