I need to split a column that contains information into several columns.
I'd use tstrsplit but the same kind of information is not in the same order among the rows and I need to extract the name of the new column within the variable. Important to know: there can be many pieces of information (fields to become new variables) and I don't know all of them, so I don't want a "field by field" solution.   
Below is an example of what I have:
library(data.table)
myDT <- structure(list(chr = c("chr1", "chr2", "chr4"), pos = c(123L,
                  435L, 120L), info = c("type=3;end=4", "end=6", "end=5;pos=TRUE;type=2"
                  )), class = c("data.table", "data.frame"), row.names = c(NA,-3L))
#    chr pos                  info
#1: chr1 123          type=3;end=4
#2: chr2 435                 end=6
#3: chr4 120 end=5;pos=TRUE;type=2
And I'd like to get:
#    chr pos end  pos type
#1: chr1 123   4 <NA>    3
#2: chr2 435   6 <NA> <NA>
#3: chr4 120   5 TRUE    2
A most straightforward way to get that would be much appreciated! (Note: I'm not willing to go with a dplyr/tidyr way)
Using regex and the stringi packages:
setDT(myDT) # After creating data.table from structure()
library(stringi)
fields <- unique(unlist(stri_extract_all(regex = "[a-z]+(?==)", myDT$info)))
patterns <- sprintf("(?<=%s=)[^;]+", fields)
myDT[, (fields) := lapply(patterns, function(x) stri_extract(regex = x, info))]
myDT[, !"info"]
    chr  pos type end
1: chr1 <NA>    3   4
2: chr2 <NA> <NA>   6
3: chr4 TRUE    2   5
Edit: To get the correct type it seems (?) type.convert() can be used:
myDT[, (fields) := lapply(patterns, function(x) type.convert(stri_extract(regex = x, info), as.is = TRUE))]
                        We could split on ";" then reshape wide-to-long, then split again on "=", then reshape back to long-to-wide:
dcast(
  melt(dt[,  paste0("col", 1:3) := tstrsplit(info, split = ";") ],
       id.vars = c("chr", "pos", "info"))[, -c("info", "variable")][
         ,c("x1", "x2") := tstrsplit(value, split = "=")][
           ,value := NULL][ !is.na(x1), ],
  chr + pos ~ x1, value.var = "x2")
#     chr pos end  pos type
# 1: chr1 123   4 <NA>    3
# 2: chr2 435   6 <NA> <NA>
# 3: chr4 120   5 TRUE    2
An improved / more readible version:
dt[, paste0("col", 1:3) := tstrsplit(info, split = ";")
   ][, melt(.SD, id.vars = c("chr", "pos", "info"), na.rm = TRUE)
     ][, -c("info", "variable")
       ][, c("x1", "x2") := tstrsplit(value, split = "=")
         ][, dcast(.SD, chr + pos ~ x1, value.var = "x2")]
                        For now, I managed to get what I want with the following code:
newDT <- reshape(splitstackshape::cSplit(myDT, "info", sep=";", "long")[, 
                  c(.SD, tstrsplit(info, "="))], 
                 idvar=c("chr", "pos"), direction="wide", timevar="V4", drop="info")
setnames(newDT, sub("V5\\.", "", names(newDT)))
newDT
#    chr pos type end  pos
#1: chr1 123    3   4 <NA>
#2: chr2 435 <NA>   6 <NA>
#3: chr4 120    2   5 TRUE
Two options to improve the lines above, thanks to @A5C1D2H2I1M1N2O1R2T1 (who gave them in comments) :
. with a double cSplit prior to dcast:
cSplit(cSplit(myDT, "info", ";", "long"), "info", "=")[, dcast(.SD, chr + pos ~ info_1, value.var = "info_2")]
. with cSplit/trstrplit and dcast instead of reshape:
cSplit(myDT, "info", ";", "long")[, c("t1", "t2") := tstrsplit(info, "=", fixed = TRUE)][, dcast(.SD, chr + pos ~ t1, value.var = "t2")]
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With