In the second last chapter For a Few Monads More of the very nice tutorial "Learn You a Haskell for a Great Good" the author defines the following monad:
import Data.Ratio
newtype Prob a = Prob { getProb :: [(a,Rational)] } deriving Show
flatten :: Prob (Prob a) -> Prob a
flatten (Prob xs) = Prob $ concat $ map multAll xs
where multAll (Prob innerxs,p) = map (\(x,r) -> (x,p*r)) innerxs
instance Monad Prob where
return x = Prob [(x,1%1)]
m >>= f = flatten (fmap f m)
fail _ = Prob []
I wondered if it is possible in Haskell to specialize the bind operator ">>=" in case the value in the monad belongs to a special typeclass like Eq, as I'd like to add up all probabilities belonging to the same value.
This is called a "restricted monad" and you define it like this:
{-# LANGUAGE ConstraintKinds, TypeFamilies, KindSignatures, FlexibleContexts, UndecidableInstances #-}
module Control.Restricted (RFunctor(..),
RApplicative(..),
RMonad(..),
RMonadPlus(..),) where
import Prelude hiding (Functor(..), Monad(..))
import Data.Foldable (Foldable(foldMap))
import GHC.Exts (Constraint)
class RFunctor f where
type Restriction f a :: Constraint
fmap :: (Restriction f a, Restriction f b) => (a -> b) -> f a -> f b
class (RFunctor f) => RApplicative f where
pure :: (Restriction f a) => a -> f a
(<*>) :: (Restriction f a, Restriction f b) => f (a -> b) -> f a -> f b
class (RApplicative m) => RMonad m where
(>>=) :: (Restriction m a, Restriction m b) => m a -> (a -> m b) -> m b
(>>) :: (Restriction m a, Restriction m b) => m a -> m b -> m b
a >> b = a >>= \_ -> b
join :: (Restriction m a, Restriction m (m a)) => m (m a) -> m a
join a = a >>= id
fail :: (Restriction m a) => String -> m a
fail = error
return :: (RMonad m, Restriction m a) => a -> m a
return = pure
class (RMonad m) => RMonadPlus m where
mplus :: (Restriction m a) => m a -> m a -> m a
mzero :: (Restriction m a) => m a
msum :: (Restriction m a, Foldable t) => t (m a) -> m a
msum t = getRMonadPlusMonoid $ foldMap RMonadPlusMonoid t
data RMonadPlusMonoid m a = RMonadPlusMonoid { getRMonadPlusMonoid :: m a }
instance (RMonadPlus m, Restriction m a) => Monoid (RMonadPlusMonoid m a) where
mappend (RMonadPlusMonoid x) (RMonadPlusMonoid y) = RMonadPlusMonoid $ mplus x y
mempty = RMonadPlusMonoid mzero
mconcat t = RMonadPlusMonoid . msum $ map getRMonadPlusMonoid t
guard :: (RMonadPlus m, Restriction m a) => Bool -> m ()
guard p = if p then return () else mzero
To use a restricted monad, you need to begin your file like this:
{-# LANGUAGE ConstraintKinds, TypeFamilies, RebindableSyntax #-}
module {- module line -} where
import Prelude hiding (Functor(..), Monad(..))
import Control.Restricted
Thanks to Ptharien's Flame's answer (please upvote it!) I managed to adapt the example monad from "Learn You a Haskell for a Great Good" running. As I had to google some details (being a Haskell-newbie) here is what I did at the end (the example flipThree in "Learn..." gives now [(True,9 % 40), (False,31 % 40)]):
file Control/Restricted.hs (to shorten it I removed RApplicative, RMonadPlus etc):
{-# LANGUAGE ConstraintKinds, TypeFamilies, KindSignatures, FlexibleContexts, UndecidableInstances #-}
module Control.Restricted (RFunctor(..),
RMonad(..)) where
import Prelude hiding (Functor(..), Monad(..))
import Data.Foldable (Foldable(foldMap))
import Data.Monoid
import GHC.Exts (Constraint)
class RFunctor f where
type Restriction f a :: Constraint
fmap :: (Restriction f a, Restriction f b) => (a -> b) -> f a -> f b
class (RFunctor m) => RMonad m where
return :: (Restriction m a) => a -> m a
(>>=) :: (Restriction m a, Restriction m b) => m a -> (a -> m b) -> m b
(>>) :: (Restriction m a, Restriction m b) => m a -> m b -> m b
a >> b = a >>= \_ -> b
join :: (Restriction m a, Restriction m (m a)) => m (m a) -> m a
join a = a >>= id
fail :: (Restriction m a) => String -> m a
fail = error
file Prob.hs:
{-# LANGUAGE ConstraintKinds, TypeFamilies, RebindableSyntax, FlexibleContexts #-}
import Data.Ratio
import Control.Restricted
import Prelude hiding (Functor(..), Monad(..))
import Control.Arrow (first, second)
import Data.List (all)
newtype Prob a = Prob { getProb :: [(a, Rational)] } deriving Show
instance RFunctor Prob where
type Restriction Prob a = (Eq a)
fmap f (Prob as) = Prob $ map (first f) as
flatten :: Prob (Prob a) -> Prob a
flatten (Prob xs) = Prob $ concat $ map multAll xs
where multAll (Prob innerxs, p) = map (\(x, r) -> (x, p*r)) innerxs
compress :: Eq a => Prob a -> Prob a
compress (Prob as) = Prob $ foldr f [] as
where f a [] = [a]
f (a, p) ((b, q):bs) | a == b = (a, p+q):bs
| otherwise = (b, q):f (a, p) bs
instance Eq a => Eq (Prob a) where
(==) (Prob as) (Prob bs) = all (`elem` bs) as
instance RMonad Prob where
return x = Prob [(x, 1%1)]
m >>= f = compress $ flatten (fmap f m)
fail _ = Prob []
Here another possibility based on Generalized Algebraic Datatypes using a technique by Ganesh Sittampalam:
{-# LANGUAGE GADTs #-}
import Control.Arrow (first, second)
import Data.Ratio
import Data.List (foldl')
-- monads over typeclass Eq
class EqMonad m where
eqReturn :: Eq a => a -> m a
eqBind :: (Eq a, Eq b) => m a -> (a -> m b) -> m b
eqFail :: Eq a => String -> m a
eqFail = error
data AsMonad m a where
Embed :: (EqMonad m, Eq a) => m a -> AsMonad m a
Return :: EqMonad m => a -> AsMonad m a
Bind :: EqMonad m => AsMonad m a -> (a -> AsMonad m b) -> AsMonad m b
instance EqMonad m => Monad (AsMonad m) where
return = Return
(>>=) = Bind
fail = error
unEmbed :: Eq a => AsMonad m a -> m a
unEmbed (Embed m) = m
unEmbed (Return v) = eqReturn v
unEmbed (Bind (Embed m) f) = m `eqBind` (unEmbed . f)
unEmbed (Bind (Return v) f) = unEmbed (f v)
unEmbed (Bind (Bind m f) g) = unEmbed (Bind m (\x -> Bind (f x) g))
-- the example monad from "Learn you a Haskell for a Great good"
newtype Prob a = Prob { getProb :: [(a, Rational)] }
deriving Show
instance Functor Prob where
fmap f (Prob as) = Prob $ map (first f) as
flatten :: Prob (Prob a) -> Prob a
flatten (Prob xs) = Prob $ concat $ map multAll xs
where multAll (Prob innerxs, p) = map (\(x, r) -> (x, p*r)) innerxs
compress :: Eq a => Prob a -> Prob a
compress (Prob as) = Prob $ foldl' f [] as
where f [] a = [a]
f ((b, q):bs) (a, p) | a == b = (a, p+q):bs
| otherwise = (b, q):f bs (a, p)
instance Eq a => Eq (Prob a) where
(==) (Prob as) (Prob bs) = all (`elem` bs) as
instance EqMonad Prob where
eqReturn x = Prob [(x, 1%1)]
m `eqBind` f = compress $ flatten (fmap f m)
eqFail _ = Prob []
newtype Probability a = Probability { getProbability :: AsMonad Prob a }
instance Monad Probability where
return = Probability . Return
a >>= f = Probability $ Bind (getProbability a) (getProbability . f)
fail = error
instance (Show a, Eq a) => Show (Probability a) where
show = show . getProb . unEmbed . getProbability
-- Example flipping four coins (now as 0/1)
prob :: Eq a => [(a, Rational)] -> Probability a
prob = Probability . Embed . Prob
coin :: Probability Int
coin = prob [(0, 1%2), (1, 1%2)]
loadedCoin :: Probability Int
loadedCoin = prob [(0, 1%10), (1, 9%10)]
flipFour :: Probability Int
flipFour = do
a <- coin
b <- coin
c <- coin
d <- loadedCoin
return (a+b+c+d)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With