I'm new to Spark and I'm busy setting up a Spark Cluster with HA enabled.
When starting a spark shell for testing via: bash spark-shell --master yarn --deploy-mode client
I receive the following error (See full error bellow): file:/tmp/spark-126d2844-5b37-461b-98a4-3f3de5ece91b/__spark_libs__3045590511279655158.zip does not exist
The application is marked as failed on the yarn web app and no containers are started.
When starting a shell via: spark-shell --master local
it opens without errors.
I have noticed that files are only being written to the tmp folder on the node where the shell is created.
Any help will be much appreciated. Let me know if more information is required.
Environment Variables:
HADOOP_CONF_DIR=/opt/hadoop-2.7.3/etc/hadoop/
YARN_CONF_DIR=/opt/hadoop-2.7.3/etc/hadoop/
SPARK_HOME=/opt/spark-2.0.2-bin-hadoop2.7/
Full error message:
16/11/30 21:08:47 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/11/30 21:08:49 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
16/11/30 21:09:03 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Container marked as failed: container_e14_1480532715390_0001_02_000003 on host: slave2. Exit status: -1000. Diagnostics: File file:/tmp/spark-126d2844-5b37-461b-98a4-3f3de5ece91b/__spark_libs__3045590511279655158.zip does not exist
java.io.FileNotFoundException: File file:/tmp/spark-126d2844-5b37-461b-98a4-3f3de5ece91b/__spark_libs__3045590511279655158.zip
does not exist
at org.apache.hadoop.fs.RawLocalFileSystem.deprecatedGetFileStatus(RawLocalFileSystem.java:611)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileLinkStatusInternal(RawLocalFileSystem.java:824)
at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:601)
at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:421)
at org.apache.hadoop.yarn.util.FSDownload.copy(FSDownload.java:253)
at org.apache.hadoop.yarn.util.FSDownload.access$000(FSDownload.java:63)
at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:361)
at org.apache.hadoop.yarn.util.FSDownload$2.run(FSDownload.java:359)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:358)
at org.apache.hadoop.yarn.util.FSDownload.call(FSDownload.java:62)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
16/11/30 22:29:28 ERROR cluster.YarnClientSchedulerBackend: Yarn application has already exited with state FINISHED! 16/11/30 22:29:28 ERROR spark.SparkContext: Error initializing SparkContext. java.lang.IllegalStateException: Spark context stopped while waiting for backend
at org.apache.spark.scheduler.TaskSchedulerImpl.waitBackendReady(TaskSchedulerImpl.scala:584)
at org.apache.spark.scheduler.TaskSchedulerImpl.postStartHook(TaskSchedulerImpl.scala:162)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:546)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2258)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:831)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$8.apply(SparkSession.scala:823)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:823)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:95)
at $line3.$read$$iw$$iw.<init>(<console>:15)
at $line3.$read$$iw.<init>(<console>:31)
at $line3.$read.<init>(<console>:33)
at $line3.$read$.<init>(<console>:37)
at $line3.$read$.<clinit>(<console>)
at $line3.$eval$.$print$lzycompute(<console>:7)
at $line3.$eval$.$print(<console>:6)
at $line3.$eval.$print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:38)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:37)
at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:37)
at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:94)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
at org.apache.spark.repl.Main$.doMain(Main.scala:68)
at org.apache.spark.repl.Main$.main(Main.scala:51)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:736)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:185)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:210)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:124)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
yarn-site.xml
<configuration>
<property>
<name>yarn.resourcemanager.connect.retry-interval.ms</name>
<value>2000</value>
</property>
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.ha.automatic-failover.embedded</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yarn-cluster</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.ha.id</name>
<value>rm1</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
</property>
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>master:2181,slave1:2181,slave2:2181</value>
</property>
<property>
<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
<value>5000</value>
</property>
<property>
<name>yarn.resourcemanager.work-preserving-recovery.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>master:23140</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>master:23130</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm1</name>
<value>master:23189</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>master:23188</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>master:23125</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm1</name>
<value>master:23141</value>
</property>
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>slave1:23140</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>slave1:23130</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm2</name>
<value>slave1:23189</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>slave1:23188</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>slave1:23125</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm2</name>
<value>slave1:23141</value>
</property>
<property>
<description>Address where the localizer IPC is.</description>
<name>yarn.nodemanager.localizer.address</name>
<value>0.0.0.0:23344</value>
</property>
<property>
<description>NM Webapp address.</description>
<name>yarn.nodemanager.webapp.address</name>
<value>0.0.0.0:23999</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/tmp/pseudo-dist/yarn/local</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/tmp/pseudo-dist/yarn/log</value>
</property>
<property>
<name>mapreduce.shuffle.port</name>
<value>23080</value>
</property>
<property>
<name>yarn.resourcemanager.work-preserving-recovery.enabled</name>
<value>true</value>
</property>
</configuration>
Launching Spark on YARNEnsure that HADOOP_CONF_DIR or YARN_CONF_DIR points to the directory which contains the (client side) configuration files for the Hadoop cluster. These configs are used to write to HDFS and connect to the YARN ResourceManager.
No, it is not necessary to install Spark on all the 3 nodes. Since spark runs on top of Yarn, it utilizes yarn for the execution of its commands over the cluster's nodes. So, you just have to install Spark on one node.
If it says yarn - it's running on YARN... if it shows a URL of the form spark://... it's a standalone cluster. This might seem like a silly question, but if I run yarn application -list and my process ID is in the output, then this must mean that it's running in yarn mode, right?
You can submit a Spark batch application by using cluster mode (default) or client mode either inside the cluster or from an external client: Cluster mode (default): Submitting Spark batch application and having the driver run on a host in your driver resource group. The spark-submit syntax is --deploy-mode cluster.
This error was due to the config in the core-site.xml file.
Please note that to find this file your
HADOOP_CONF_DIR
env variable must be set.In my case I added
HADOOP_CONF_DIR=/opt/hadoop-2.7.3/etc/hadoop/
to./conf/spark-env.sh
See: Spark Job running on Yarn Cluster java.io.FileNotFoundException: File does not exits , eventhough the file exits on the master node
core-site.xml
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>
</property>
</configuration>
If this endpoint is unreachable, or if Spark detects that the file system is the same as the current system, the lib files will not be distributed to the other nodes in your cluster causing the errors above.
In my situation the node I was on couldn't reach port 9000 on the specified host.
Debugging
Turn the log level up to info. You can do this by:
Copy ./conf/log4j.properties.template
to ./conf/log4j.properties
In the file set log4j.logger.org.apache.spark.repl.Main = INFO
Start your Spark Shell as normal. If your issue is the same as mine, you should see an info message such as: INFO Client: Source and destination file systems are the same. Not copying file:/tmp/spark-c1a6cdcd-d348-4253-8755-5086a8931e75/__spark_libs__1391186608525933727.zip
This should lead you to the problem as it starts the train reaction that results from the missing files.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With