Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Spark Failure : Caused by: org.apache.spark.shuffle.FetchFailedException: Too large frame: 5454002341

I am generating a hierarchy for a table determining the parent child.

Below is the configuration used, even after getting the error with regards to the too large frame:

Spark properties

--conf spark.yarn.executor.memoryOverhead=1024mb \
--conf yarn.nodemanager.resource.memory-mb=12288mb \
--driver-memory 32g \
--driver-cores  8 \
--executor-cores 32 \
--num-executors 8 \
--executor-memory 256g \
--conf spark.maxRemoteBlockSizeFetchToMem=15g

import org.apache.log4j.{Level, Logger};
import org.apache.spark.SparkContext;
import org.apache.spark.sql.{DataFrame, SparkSession};
import org.apache.spark.sql.functions._;
import org.apache.spark.sql.expressions._;


lazy val sparkSession = SparkSession.builder.enableHiveSupport().getOrCreate();

import spark.implicits._;

val hiveEmp: DataFrame = sparkSession.sql("select * from db.employee");
hiveEmp.repartition(300);
import org.apache.spark.sql.functions._;

val nestedLevel = 3;

val empHierarchy = (1 to nestedLevel).foldLeft(hiveEmp.as("wd0")) { (wDf, i) =>
val j = i - 1
wDf.join(hiveEmp.as(s"wd$i"), col(s"wd$j.parent_id".trim) === col(s"wd$i.id".trim), "left_outer")
}.select(
col("wd0.id") :: col("wd0.parent_id") ::
col("wd0.amount").as("amount") :: col("wd0.payment_id").as("payment_id") :: (
(1 to nestedLevel).toList.map(i => col(s"wd$i.amount").as(s"amount_$i")) :::
(1 to nestedLevel).toList.map(i => col(s"wd$i.payment_id").as(s"payment_id_$i"))

): _*);

empHierarchy.write.saveAsTable("employee4");

Error

Caused by: org.apache.spark.SparkException: Task failed while writing rows
   at org.apache.spark.sql.execution.datasources.FileFormatWriter$.org$apache$spark$sql$execution$datasources$FileFormatWriter$$executeTask(FileFormatWriter.scala:204)
   at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$3.apply(FileFormatWriter.scala:129)
   at org.apache.spark.sql.execution.datasources.FileFormatWriter$$anonfun$write$1$$anonfun$3.apply(FileFormatWriter.scala:128)
   at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
   at org.apache.spark.scheduler.Task.run(Task.scala:99)
   at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
   ... 3 more
Caused by: org.apache.spark.shuffle.FetchFailedException: Too large frame: 5454002341
   at org.apache.spark.storage.ShuffleBlockFetcherIterator.throwFetchFailedException(ShuffleBlockFetcherIterator.scala:361)
   at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:336)
like image 895
Sampat Kumar Avatar asked Jul 11 '18 06:07

Sampat Kumar


3 Answers

use this spark config, spark.maxRemoteBlockSizeFetchToMem < 2g

Since there is lot of issues with> 2G partition (cannot shuffle, cannot cache on disk), Hence it is throwing failedfetchedexception too large data frame.

like image 189
Suresh G Avatar answered Nov 01 '22 12:11

Suresh G


Suresh is right. Here's a better documented & formatted version of his answer with some useful background info:

  • bug report (link to the fix is at the very bottom)
  • fix (fixed as of 2.2.0 - already mentioned by Jared)
  • change of config's default value (changed as of 2.4.0)

If you're on a version 2.2.x or 2.3.x, you can achieve the same effect by setting the value of the config to Int.MaxValue - 512, i.e. by setting spark.maxRemoteBlockSizeFetchToMem=2147483135. See here for the default value used as of September 2019.

like image 7
akavalar Avatar answered Nov 01 '22 13:11

akavalar


This means that size of your dataset partitions is enormous. You need to repartition your dataset to more partitions.

you can do this using,

df.repartition(n)

Here, n is dependent on the size of your dataset.

like image 4
Chitral Verma Avatar answered Nov 01 '22 14:11

Chitral Verma