I have input dataframe as below with id, app, and customer
Input dataframe
+--------------------+-----+---------+
| id|app |customer |
+--------------------+-----+---------+
|id1 | fw| WM |
|id1 | fw| CS |
|id2 | fw| CS |
|id1 | fe| WM |
|id3 | bc| TR |
|id3 | bc| WM |
+--------------------+-----+---------+
Expected output
Using pivot and aggregate - make app values as column name and put aggregated customer names as list in the dataframe
Expected dataframe
+--------------------+----------+-------+----------+
| id| bc | fe| fw |
+--------------------+----------+-------+----------+
|id1 | 0 | WM| [WM,CS]|
|id2 | 0 | 0| [CS] |
|id3 | [TR,WM] | 0| 0 |
+--------------------+----------+-------+----------+
What have i tried ?
val newDF = df.groupBy("id").pivot("app").agg(expr("coalesce(first(customer),0)")).drop("app").show()
+--------------------+-----+-------+------+
| id|bc | fe| fw|
+--------------------+-----+-------+------+
|id1 | 0 | WM| WM|
|id2 | 0 | 0| CS|
|id3 | TR | 0| 0|
+--------------------+-----+-------+------+
Issue : In my query , i am not able to get the list of customer like [WM,CS] for "id1" under "fw" (as shown in expected output) , only "WM" is coming. Similarly, for "id3" only "TR" is appearing - instead a list should appear with value [TR,WM] under "bc" for "id3"
Need your suggestion to get the list of customer under each app respectively.
You can use collect_list
if you can bear with an empty List at cells where it should be zero:
df.groupBy("id").pivot("app").agg(collect_list("customer")).show
+---+--------+----+--------+
| id| bc| fe| fw|
+---+--------+----+--------+
|id3|[TR, WM]| []| []|
|id1| []|[WM]|[CS, WM]|
|id2| []| []| [CS]|
+---+--------+----+--------+
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With