Am not sure what's causing this exception running my Spark job after running for some few hours.
Am running Spark 2.0.2
Any debugging tip ?
2016-12-27 03:11:22,199 [shuffle-server-3] ERROR org.apache.spark.network.server.TransportRequestHandler - Error while invoking RpcHandler#receive() for one-way message.
org.apache.spark.SparkException: Could not find CoarseGrainedScheduler.
at org.apache.spark.rpc.netty.Dispatcher.postMessage(Dispatcher.scala:154)
at org.apache.spark.rpc.netty.Dispatcher.postOneWayMessage(Dispatcher.scala:134)
at org.apache.spark.rpc.netty.NettyRpcHandler.receive(NettyRpcEnv.scala:571)
at org.apache.spark.network.server.TransportRequestHandler.processOneWayMessage(TransportRequestHandler.java:180)
at org.apache.spark.network.server.TransportRequestHandler.handle(TransportRequestHandler.java:109)
at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:119)
at org.apache.spark.network.server.TransportChannelHandler.channelRead0(TransportChannelHandler.java:51)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.timeout.IdleStateHandler.channelRead(IdleStateHandler.java:266)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:85)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEve
Yeah now I know the meaning of that cryptic exception, the executor got killed because it exceeds the container memory threshold.
There are couple of reasons that could happen but the first culprit is to check your job (e.g. repartition) or try adding more nodes/executors to your cluster.
Basically it means that there is another reason for the failure. Try to find other exception in your job logs.
See "Exceptions" sections here: https://medium.com/@wx.london.cun/spark-on-yarn-f74e82ab6070
It could be a resource problem. Try to increase the number of cores and executor and also to assign more RAM to the application then you should increase the partition number of your RDD by calling a repartition. The ideal number of partitions depends on previous settings. Hope this helps.
Another silly reason could be that your time in spark streaming awaitTermination is set to much less time, and it got terminated before completing
ssc.awaitTermination(timeout)
@param timeout: time to wait in seconds
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With