Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Sorting columns and selecting top n rows in each group pandas dataframe

Tags:

python

pandas

I have a dataframe like this:

mainid  pidx    pidy   score   1      a        b      2   1      a        c      5   1      c        a      7   1      c        b      2   1      a        e      8   2      x        y      1   2      y        z      3   2      z        y      5   2      x        w      12   2      x        v      1   2      y        x      6    

I want to groupby on column 'pidx' and then sort score in descending order in each group i.e for each pidx

and then select head(2) i.e top 2 from each group.

The result I am looking for is like this:

mainid   pidx    pidy    score   1        a      e        8   1        a      c        5   1        c      a        7   1        c      b        2   2        x      w        12   2        x      y        1   2        y      x        6   2        y      z        3   2        z      y        5 

What I tried was:

df.sort(['pidx','score'],ascending = False).groupby('pidx').head(2)  

and this seems to work, but I dont know if it's the right approach if working on a huge dataset. What other best method can I use to get such result?

like image 726
Shubham R Avatar asked Jan 24 '17 10:01

Shubham R


People also ask

How do I select top 10 rows in pandas DataFrame?

Use pandas. DataFrame. head(n) to get the first n rows of the DataFrame. It takes one optional argument n (number of rows you want to get from the start).

How do you get top 20 rows in pandas?

You can use df. head() to get the first N rows in Pandas DataFrame. Alternatively, you can specify a negative number within the brackets to get all the rows, excluding the last N rows.


1 Answers

There are 2 solutions:

1.sort_values and aggregate head:

df1 = df.sort_values('score',ascending = False).groupby('pidx').head(2) print (df1)      mainid pidx pidy  score 8        2    x    w     12 4        1    a    e      8 2        1    c    a      7 10       2    y    x      6 1        1    a    c      5 7        2    z    y      5 6        2    y    z      3 3        1    c    b      2 5        2    x    y      1 

2.set_index and aggregate nlargest:

df = df.set_index(['mainid','pidy']).groupby('pidx')['score'].nlargest(2).reset_index()  print (df)   pidx  mainid pidy  score 0    a       1    e      8 1    a       1    c      5 2    c       1    a      7 3    c       1    b      2 4    x       2    w     12 5    x       2    y      1 6    y       2    x      6 7    y       2    z      3 8    z       2    y      5 

Timings:

np.random.seed(123) N = 1000000  L1 = list('abcdefghijklmnopqrstu') L2 = list('efghijklmnopqrstuvwxyz') df = pd.DataFrame({'mainid':np.random.randint(1000, size=N),                    'pidx': np.random.randint(10000, size=N),                    'pidy': np.random.choice(L2, N),                    'score':np.random.randint(1000, size=N)}) #print (df)  def epat(df):     grouped = df.groupby('pidx')     new_df = pd.DataFrame([], columns = df.columns)     for key, values in grouped:         new_df = pd.concat([new_df, grouped.get_group(key).sort_values('score', ascending=True)[:2]], 0)     return (new_df)  print (epat(df))  In [133]: %timeit (df.sort_values('score',ascending = False).groupby('pidx').head(2)) 1 loop, best of 3: 309 ms per loop  In [134]: %timeit (df.set_index(['mainid','pidy']).groupby('pidx')['score'].nlargest(2).reset_index()) 1 loop, best of 3: 7.11 s per loop  In [147]: %timeit (epat(df)) 1 loop, best of 3: 22 s per loop 
like image 133
jezrael Avatar answered Sep 21 '22 19:09

jezrael