I'm trying to figure out how to add 3 months to a date in a Pandas dataframe, while keeping it in the date format, so I can use it to lookup a range.
This is what I've tried:
#create dataframe df = pd.DataFrame([pd.Timestamp('20161011'), pd.Timestamp('20161101') ], columns=['date']) #create a future month period plus_month_period = 3 #calculate date + future period df['future_date'] = plus_month_period.astype("timedelta64[M]")
However, I get the following error:
AttributeError: 'int' object has no attribute 'astype'
In pandas, a string is converted to a datetime object using the pd. to_datetime() method and pd. DateOffset() method is used to add months to the created pandas object.
Suppose you have a dataframe of the following format, where you have to add integer months to a date column.
Start_Date | Months_to_add |
---|---|
2014-06-01 | 23 |
2014-06-01 | 4 |
2000-10-01 | 10 |
2016-07-01 | 3 |
2017-12-01 | 90 |
2019-01-01 | 2 |
In such a scenario, using Zero's code or mattblack's code won't be useful. You have to use lambda function over the rows where the function takes 2 arguments -
You can use the following function:
# Importing required modules from dateutil.relativedelta import relativedelta # Defining the function def add_months(start_date, delta_period): end_date = start_date + relativedelta(months=delta_period) return end_date
After this you can use the following code snippet to add months to the Start_Date
column. Use progress_apply
functionality of Pandas. Refer to this Stackoverflow answer on progress_apply
: Progress indicator during pandas operations.
from tqdm import tqdm tqdm.pandas() df["End_Date"] = df.progress_apply(lambda row: add_months(row["Start_Date"], row["Months_to_add"]), axis = 1)
Here's the full code form dataset creation, for your reference:
import pandas as pd from dateutil.relativedelta import relativedelta from tqdm import tqdm tqdm.pandas() # Initilize a new dataframe df = pd.DataFrame() # Add Start Date column df["Start_Date"] = ['2014-06-01T00:00:00.000000000', '2014-06-01T00:00:00.000000000', '2000-10-01T00:00:00.000000000', '2016-07-01T00:00:00.000000000', '2017-12-01T00:00:00.000000000', '2019-01-01T00:00:00.000000000'] # To convert the date column to a datetime format df["Start_Date"] = pd.to_datetime(df["Start_Date"]) # Add months column df["Months_to_add"] = [23, 4, 10, 3, 90, 2] # Defining the Add Months function def add_months(start_date, delta_period): end_date = start_date + relativedelta(months=delta_period) return end_date # Apply function on the dataframe using lambda operation. df["End_Date"] = df.progress_apply(lambda row: add_months(row["Start_Date"], row["Months_to_add"]), axis = 1)
You will have the final output dataframe as follows.
Start_Date | Months_to_add | End_Date |
---|---|---|
2014-06-01 | 23 | 2016-05-01 |
2014-06-01 | 4 | 2014-10-01 |
2000-10-01 | 10 | 2001-08-01 |
2016-07-01 | 3 | 2016-10-01 |
2017-12-01 | 90 | 2025-06-01 |
2019-01-01 | 2 | 2019-03-01 |
Please add to comments if there are any issues with the above code.
All the best!
You could use pd.DateOffset
In [1756]: df.date + pd.DateOffset(months=plus_month_period) Out[1756]: 0 2017-01-11 1 2017-02-01 Name: date, dtype: datetime64[ns]
Another way using pd.offsets.MonthOffset
In [1785]: df.date + pd.offsets.MonthOffset(plus_month_period) Out[1785]: 0 2016-10-14 1 2016-11-04 Name: date, dtype: datetime64[ns]
Details
In [1757]: df Out[1757]: date 0 2016-10-11 1 2016-11-01 In [1758]: plus_month_period Out[1758]: 3
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With