I was recently reading an article which mentioned:
For God's sake, don't try sorting a linked list during the interview.
Is there any reason why the author wrote this? The reason is not immediately clear. I am aware that merge sort works on linked lists in O(nlgn) time- what's wrong with that? Am I missing something obvious?
EDIT: Any reason why is question is voted to close? I'm honestly curious and merely looking for some answers or interesting points.
Merge sort is often preferred for sorting a linked list. The slow random-access performance of a linked list makes some other algorithms (such as quicksort) perform poorly, and others (such as heapsort) completely impossible.
Using linked list binary search will take O(n) time. So binary search is inefficient with linked list.
Below is a simple insertion sort algorithm for a linked list. 1) Create an empty sorted (or result) list 2) Traverse the given list, do following for every node. ......a) Insert current node in sorted way in sorted or result list. 3) Change head of given linked list to head of sorted (or result) list.
Theoretically yes, however the searching won't be faster than linear search. This is because the linked list can only be accessed sequentially and not in random order.
I have no way of knowing why the author of the blog wrote what he did. If I had to guess, I'd say what was really meant was something along the lines of:
Don't assume that efficiently sorting a linked list would be as easy as sorting a data structure that provides random access to its elements. If you do end up relying on being able to sort a linked list, be prepared to explain what a suitable algorithm might be, and to discuss its complexity.
I think you'll find that, although it's possible to sort a linked list using merge sort, the code to do so efficiently is somewhat involved. It's not something you'd want to develop while standing at the white board in the middle of an interview.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With