I have a DataFrame with MultiIndex looking like this after printing in the console:
                             value  indA  indB
           scenarioId group                        
2015-04-13    1       A           -54.0   1.0   1.0
                      B          -160.0   1.0   1.0
                      C           -15.0   0.0   1.0
              2       A           -83.0   1.0   1.0
              3       A           -80.0   2.0   2.0
              4       A          -270.0   2.0   2.0
2015-04-14    1       A           -56.0   1.0   1.0
                      B            -1.0   1.0   1.0
                      C           -60.0   0.0   1.0
              2       A           -32.0   1.0   1.0
              3       A           -91.0   2.0   2.0
              4       A           -17.0   2.0   2.0
I got it after I used the groupby and sum functions on my initial dataset.
I would like to keep the same format, but order it according to the value column. I have tried hard to do it using the sorting functions, but I think that the fact of having the first index (for the dates) of the MultiIndex without name is a problem.
Essentially, the output should look like this:
                             value  indA  indB
           scenarioId group                        
2015-04-13   1        B          -160.0   1.0   1.0
                      A           -54.0   1.0   1.0
                      C           -15.0   0.0   1.0
             2        A           -83.0   1.0   1.0
             3        A           -80.0   2.0   2.0
             4        A          -270.0   2.0   2.0
2015-04-14   1        C           -60.0   1.0   1.0
                      A           -56.0   1.0   1.0
                      B            -1.0   0.0   1.0
             2        A           -32.0   1.0   1.0
             3        A           -91.0   2.0   2.0
             4        A           -17.0   2.0   2.0
Could someone enlighten me on this please?
Thanks in advance.
To sort the DataFrame based on the values in a single column, you'll use . sort_values() . By default, this will return a new DataFrame sorted in ascending order. It does not modify the original DataFrame.
You can sort pandas DataFrame by one or multiple (one or more) columns using sort_values() method and by ascending or descending order.
Pandas Series: sort_index() function The sort_index() function is used to sort Series by index labels. Returns a new Series sorted by label if inplace argument is False, otherwise updates the original series and returns None. Axis to direct sorting. This can only be 0 for Series.
You can use sort_values + sort_index:
print (df.sort_values('value').sort_index(level=[0,1], sort_remaining=False))
                             value  indA  indB
           scenarioId group                   
2015-04-13 1          B     -160.0   1.0   1.0
                      A      -54.0   1.0   1.0
                      C      -15.0   0.0   1.0
           2          A      -83.0   1.0   1.0
           3          A      -80.0   2.0   2.0
           4          A     -270.0   2.0   2.0
2015-04-14 1          C      -60.0   0.0   1.0
                      A      -56.0   1.0   1.0
                      B       -1.0   1.0   1.0
           2          A      -32.0   1.0   1.0
           3          A      -91.0   2.0   2.0
           4          A      -17.0   2.0   2.0
Another solution - sort_values with reset_index and set_index:
df = df.reset_index()
       .sort_values(['level_0','scenarioId','value'])
       .set_index(['level_0','scenarioId','group'])
print (df)
                             value  indA  indB
level_0    scenarioId group                   
2015-04-13 1          B     -160.0   1.0   1.0
                      A      -54.0   1.0   1.0
                      C      -15.0   0.0   1.0
           2          A      -83.0   1.0   1.0
           3          A      -80.0   2.0   2.0
           4          A     -270.0   2.0   2.0
2015-04-14 1          C      -60.0   0.0   1.0
                      A      -56.0   1.0   1.0
                      B       -1.0   1.0   1.0
           2          A      -32.0   1.0   1.0
           3          A      -91.0   2.0   2.0
           4          A      -17.0   2.0   2.0
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With