I am seeking some simple (i.e. - no maths notation, long-form reproducible code) examples for the filter
function in R I think I have my head around the convolution method, but am stuck at generalising the recursive option. I have read and battled with various documentation, but the help is just a bit opaque to me.
Here are the examples I have figured out so far:
# Set some values for filter components f1 <- 1; f2 <- 1; f3 <- 1;
And on we go:
# basic convolution filter filter(1:5,f1,method="convolution") [1] 1 2 3 4 5 #equivalent to: x[1] * f1 x[2] * f1 x[3] * f1 x[4] * f1 x[5] * f1 # convolution with 2 coefficients in filter filter(1:5,c(f1,f2),method="convolution") [1] 3 5 7 9 NA #equivalent to: x[1] * f2 + x[2] * f1 x[2] * f2 + x[3] * f1 x[3] * f2 + x[4] * f1 x[4] * f2 + x[5] * f1 x[5] * f2 + x[6] * f1 # convolution with 3 coefficients in filter filter(1:5,c(f1,f2,f3),method="convolution") [1] NA 6 9 12 NA #equivalent to: NA * f3 + x[1] * f2 + x[2] * f1 #x[0] = doesn't exist/NA x[1] * f3 + x[2] * f2 + x[3] * f1 x[2] * f3 + x[3] * f2 + x[4] * f1 x[3] * f3 + x[4] * f2 + x[5] * f1 x[4] * f3 + x[5] * f2 + x[6] * f1
Now's when I am hurting my poor little brain stem. I managed to figure out the most basic example using info at this post: https://stackoverflow.com/a/11552765/496803
filter(1:5, f1, method="recursive") [1] 1 3 6 10 15 #equivalent to: x[1] x[2] + f1*x[1] x[3] + f1*x[2] + f1^2*x[1] x[4] + f1*x[3] + f1^2*x[2] + f1^3*x[1] x[5] + f1*x[4] + f1^2*x[3] + f1^3*x[2] + f1^4*x[1]
Can someone provide similar code to what I have above for the convolution examples for the recursive version with filter = c(f1,f2)
and filter = c(f1,f2,f3)
?
Answers should match the results from the function:
filter(1:5, c(f1,f2), method="recursive") [1] 1 3 7 14 26 filter(1:5, c(f1,f2,f3), method="recursive") [1] 1 3 7 15 30
To finalise using @agstudy's neat answer:
> filter(1:5, f1, method="recursive") Time Series: Start = 1 End = 5 Frequency = 1 [1] 1 3 6 10 15 > y1 <- x[1] > y2 <- x[2] + f1*y1 > y3 <- x[3] + f1*y2 > y4 <- x[4] + f1*y3 > y5 <- x[5] + f1*y4 > c(y1,y2,y3,y4,y5) [1] 1 3 6 10 15
and...
> filter(1:5, c(f1,f2), method="recursive") Time Series: Start = 1 End = 5 Frequency = 1 [1] 1 3 7 14 26 > y1 <- x[1] > y2 <- x[2] + f1*y1 > y3 <- x[3] + f1*y2 + f2*y1 > y4 <- x[4] + f1*y3 + f2*y2 > y5 <- x[5] + f1*y4 + f2*y3 > c(y1,y2,y3,y4,y5) [1] 1 3 7 14 26
and...
> filter(1:5, c(f1,f2,f3), method="recursive") Time Series: Start = 1 End = 5 Frequency = 1 [1] 1 3 7 15 30 > y1 <- x[1] > y2 <- x[2] + f1*y1 > y3 <- x[3] + f1*y2 + f2*y1 > y4 <- x[4] + f1*y3 + f2*y2 + f3*y1 > y5 <- x[5] + f1*y4 + f2*y3 + f3*y2 > c(y1,y2,y3,y4,y5) [1] 1 3 7 15 30
Syntax. The FILTER function filters an array based on a Boolean (True/False) array. =FILTER(array,include,[if_empty]) Argument.
Output: The filtered letters are: e e. Application: It is normally used with Lambda functions to separate list, tuple, or sets. # a list contains both even and odd numbers. seq = [ 0 , 1 , 2 , 3 , 5 , 8 , 13 ]
In the recursive case, I think no need to expand the expression in terms of xi. The key with "recursive" is to express the right hand expression in terms of previous y's.
I prefer thinking in terms of filter size.
filter size =1
y1 <- x1 y2 <- x2 + f1*y1 y3 <- x3 + f1*y2 y4 <- x4 + f1*y3 y5 <- x5 + f1*y4
filter size = 2
y1 <- x1 y2 <- x2 + f1*y1 y3 <- x3 + f1*y2 + f2*y1 # apply the filter for the past value and add current input y4 <- x4 + f1*y3 + f2*y2 y5 <- x5 + f1*y4 + f2*y3
Here's the example that I've found most helpful in visualizing what recursive filtering is really doing:
(x <- rep(1, 10)) # [1] 1 1 1 1 1 1 1 1 1 1 as.vector(filter(x, c(1), method="recursive")) ## Equivalent to cumsum() # [1] 1 2 3 4 5 6 7 8 9 10 as.vector(filter(x, c(0,1), method="recursive")) # [1] 1 1 2 2 3 3 4 4 5 5 as.vector(filter(x, c(0,0,1), method="recursive")) # [1] 1 1 1 2 2 2 3 3 3 4 as.vector(filter(x, c(0,0,0,1), method="recursive")) # [1] 1 1 1 1 2 2 2 2 3 3 as.vector(filter(x, c(0,0,0,0,1), method="recursive")) # [1] 1 1 1 1 1 2 2 2 2 2
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With