The way to check the similarity between any data point or groups is by calculating the distance between those data points. In textual data as well, we check the similarity between the strings by calculating the distance between one text to another text.
We can compare String in Java on the basis of content and reference. It is used in authentication (by equals() method), sorting (by compareTo() method), reference matching (by == operator) etc. There are three ways to compare String in Java: By Using equals() Method.
The right way of comparing String in Java is to either use equals(), equalsIgnoreCase(), or compareTo() method. You should use equals() method to check if two String contains exactly same characters in same order. It returns true if two String are equal or false if unequal.
The common way of calculating the similarity between two strings in a 0%-100% fashion, as used in many libraries, is to measure how much (in %) you'd have to change the longer string to turn it into the shorter:
/**
* Calculates the similarity (a number within 0 and 1) between two strings.
*/
public static double similarity(String s1, String s2) {
String longer = s1, shorter = s2;
if (s1.length() < s2.length()) { // longer should always have greater length
longer = s2; shorter = s1;
}
int longerLength = longer.length();
if (longerLength == 0) { return 1.0; /* both strings are zero length */ }
return (longerLength - editDistance(longer, shorter)) / (double) longerLength;
}
// you can use StringUtils.getLevenshteinDistance() as the editDistance() function
// full copy-paste working code is below
editDistance()
:The editDistance()
function above is expected to calculate the edit distance between the two strings. There are several implementations to this step, each may suit a specific scenario better. The most common is the Levenshtein distance algorithm and we'll use it in our example below (for very large strings, other algorithms are likely to perform better).
Here's two options to calculate the edit distance:
apply(CharSequence left, CharSequence rightt)
See online demo here.
public class StringSimilarity {
/**
* Calculates the similarity (a number within 0 and 1) between two strings.
*/
public static double similarity(String s1, String s2) {
String longer = s1, shorter = s2;
if (s1.length() < s2.length()) { // longer should always have greater length
longer = s2; shorter = s1;
}
int longerLength = longer.length();
if (longerLength == 0) { return 1.0; /* both strings are zero length */ }
/* // If you have Apache Commons Text, you can use it to calculate the edit distance:
LevenshteinDistance levenshteinDistance = new LevenshteinDistance();
return (longerLength - levenshteinDistance.apply(longer, shorter)) / (double) longerLength; */
return (longerLength - editDistance(longer, shorter)) / (double) longerLength;
}
// Example implementation of the Levenshtein Edit Distance
// See http://rosettacode.org/wiki/Levenshtein_distance#Java
public static int editDistance(String s1, String s2) {
s1 = s1.toLowerCase();
s2 = s2.toLowerCase();
int[] costs = new int[s2.length() + 1];
for (int i = 0; i <= s1.length(); i++) {
int lastValue = i;
for (int j = 0; j <= s2.length(); j++) {
if (i == 0)
costs[j] = j;
else {
if (j > 0) {
int newValue = costs[j - 1];
if (s1.charAt(i - 1) != s2.charAt(j - 1))
newValue = Math.min(Math.min(newValue, lastValue),
costs[j]) + 1;
costs[j - 1] = lastValue;
lastValue = newValue;
}
}
}
if (i > 0)
costs[s2.length()] = lastValue;
}
return costs[s2.length()];
}
public static void printSimilarity(String s, String t) {
System.out.println(String.format(
"%.3f is the similarity between \"%s\" and \"%s\"", similarity(s, t), s, t));
}
public static void main(String[] args) {
printSimilarity("", "");
printSimilarity("1234567890", "1");
printSimilarity("1234567890", "123");
printSimilarity("1234567890", "1234567");
printSimilarity("1234567890", "1234567890");
printSimilarity("1234567890", "1234567980");
printSimilarity("47/2010", "472010");
printSimilarity("47/2010", "472011");
printSimilarity("47/2010", "AB.CDEF");
printSimilarity("47/2010", "4B.CDEFG");
printSimilarity("47/2010", "AB.CDEFG");
printSimilarity("The quick fox jumped", "The fox jumped");
printSimilarity("The quick fox jumped", "The fox");
printSimilarity("kitten", "sitting");
}
}
Output:
1.000 is the similarity between "" and ""
0.100 is the similarity between "1234567890" and "1"
0.300 is the similarity between "1234567890" and "123"
0.700 is the similarity between "1234567890" and "1234567"
1.000 is the similarity between "1234567890" and "1234567890"
0.800 is the similarity between "1234567890" and "1234567980"
0.857 is the similarity between "47/2010" and "472010"
0.714 is the similarity between "47/2010" and "472011"
0.000 is the similarity between "47/2010" and "AB.CDEF"
0.125 is the similarity between "47/2010" and "4B.CDEFG"
0.000 is the similarity between "47/2010" and "AB.CDEFG"
0.700 is the similarity between "The quick fox jumped" and "The fox jumped"
0.350 is the similarity between "The quick fox jumped" and "The fox"
0.571 is the similarity between "kitten" and "sitting"
Yes, there are many well documented algorithms like:
A good summary ("Sam's String Metrics") can be found here (original link dead, so it links to Internet Archive)
Also check these projects:
I translated the Levenshtein distance algorithm into JavaScript:
String.prototype.LevenshteinDistance = function (s2) {
var array = new Array(this.length + 1);
for (var i = 0; i < this.length + 1; i++)
array[i] = new Array(s2.length + 1);
for (var i = 0; i < this.length + 1; i++)
array[i][0] = i;
for (var j = 0; j < s2.length + 1; j++)
array[0][j] = j;
for (var i = 1; i < this.length + 1; i++) {
for (var j = 1; j < s2.length + 1; j++) {
if (this[i - 1] == s2[j - 1]) array[i][j] = array[i - 1][j - 1];
else {
array[i][j] = Math.min(array[i][j - 1] + 1, array[i - 1][j] + 1);
array[i][j] = Math.min(array[i][j], array[i - 1][j - 1] + 1);
}
}
}
return array[this.length][s2.length];
};
There are indeed a lot of string similarity measures out there:
You can find explanation and java implementation of these here: https://github.com/tdebatty/java-string-similarity
You could use Levenshtein distance to calculate the difference between two strings. http://en.wikipedia.org/wiki/Levenshtein_distance
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With