I was wondering if it is possible to be interrupted by a signal when my program is handling other signal at the same time, I tried to simulate it with:
#include<signal.h>
#include<stdlib.h>
#include<stdio.h>
#include<unistd.h>
#include<sys/wait.h>
#include<string.h>
void sig_output()
{
sigset_t set;
sigprocmask(0,NULL,&set);
printf("currently blocking:");
if (sigismember(&set,SIGUSR1))
printf("\nSIGUSR1");
if(sigismember(&set,SIGUSR2))
printf("\nSIGUSR2");
printf("\n");
return ;
}
void sig_handler(int sig)
{
raise(SIGUSR1);
printf("start\n");
if (sig==SIGUSR1)
printf("SIGUSR1\n");
else if (sig==SIGUSR2)
printf("SIGUSR2\n");
printf("end\n");
return ;
}
void other_sig_handler(int sig)
{
printf("start - other\n");
if (sig==SIGUSR1)
printf("SIGUSR1\n");
else if (sig==SIGUSR2)
printf("SIGUSR2\n");
printf("end - other\n");
return ;
}
int main()
{
sig_output();
struct sigaction a;
a.sa_handler=sig_handler;
a.sa_flags=0;
sigset_t set,old;
//blocking SIGUSR1,SIGUSR2
sigemptyset(&set);
sigaddset(&set,SIGUSR1);
sigaddset(&set,SIGUSR2);
printf("blocking SIGUSR1, SIGUSR2\n");
sigprocmask(SIG_SETMASK,&set,&old);
sig_output();
//adding handles for SIGUSR1,SIGUSR2
sigemptyset(&(a.sa_mask));
sigaction(SIGUSR1,&a,NULL);
a.sa_handler=other_sig_handler;
sigaction(SIGUSR2,&a,NULL);
printf("poczatek wysylania \n");
raise(SIGUSR1);
raise(SIGUSR2);
raise(SIGUSR1);
printf("using sigsuspend\n");
sigsuspend(&old);
printf("end of program\n");
return 0;
}
and everytime I run this program I get
currently blocking:
blocking SIGUSR1, SIGUSR2
currently blocking:
SIGUSR1
SIGUSR2
raising
using sigsuspend
start - other
SIGUSR2
end - other
start
SIGUSR1
end
end of program
is it always like that?
Quoting the sigaction(2)
manpage:
Signal routines normally execute with the signal that caused their invocation blocked, but other signals may yet occur. A global signal mask defines the set of signals currently blocked from delivery to a process. The signal mask for a process is initialized from that of its parent (normally empty). It may be changed with a
sigprocmask(2)
call, or when a signal is delivered to the process.
You can control whether the signal is automatically blocked in its signal handler with the SA_NODEFER
flag.
The order in which these particular pending signals are delivered is not, as far as I know, defined. However, signals are (mostly; there's an exception for SIGCLD
, which is traditionally done by "cheating") "non-queueing", except for real-time signals. The non-queuing aspect means that if you have signal X blocked, and then raise
it twice (as you do above for SIGUSR1
), you only get it delivered once.
The only ordering documented on at least one system (MacOS) is:
If multiple signals are ready to be delivered at the same time, any signals that
could be caused by traps are delivered first.
(These are things like SIGSEGV
and SIGBUS
.) In general, you can control the order of delivery by use of the signal blocking masks: unblock any particular signal(s) at some point and those are the ones that can be delivered at that point.
If you do not set SA_NODEFER
, the blocking mask at the entry to your handler will always block whatever signal your handler is handling, so that you won't have to worry about recursion.
The special case for SIGCLD
comes from System V, which originally implemented this by resetting the handler to SIG_DFL
on each SIGCLD
delivery. (In fact, SysV did this with all signals, effectively implementing SA_RESETHAND
whether you wanted it or not.) The default action was to discard the signal, as if the handler were SIG_IGN
. This of course created race conditions when multiple child processes finished before the handler could do its thing. Instead of a block/unblock model, though, the SysV folks put in a hack: at the end of your SIGCLD
handler, you would call signal(SIGCLD, handler);
to fix up the handler. At that point, if there were any exited children that had not yet been wait
-ed for, SysV would immediately generate a new SIGCLD
, and your handler would be entered recursively. This made it look as though the signals were queued, without actually queueing them.
For more on Linux signals, see (eg) http://www.kernel.org/doc/man-pages/online/pages/man7/signal.7.html.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With