If we have the following data:
X = pd.DataFrame({"t":[1,2,3,4,5],"A":[34,12,78,84,26], "B":[54,87,35,25,82], "C":[56,78,0,14,13], "D":[0,23,72,56,14], "E":[78,12,31,0,34]})
X
A B C D E t
0 34 54 56 0 78 1
1 12 87 78 23 12 2
2 78 35 0 72 31 3
3 84 25 14 56 0 4
4 26 82 13 14 34 5
How can I shift the data in a cyclical fashion so that the next step is:
A B C D E t
4 26 82 13 14 34 5
0 34 54 56 0 78 1
1 12 87 78 23 12 2
2 78 35 0 72 31 3
3 84 25 14 56 0 4
And then:
A B C D E t
3 84 25 14 56 0 4
4 26 82 13 14 34 5
0 34 54 56 0 78 1
1 12 87 78 23 12 2
2 78 35 0 72 31 3
etc.
This should also shift the index values with the row.
I know of pandas X.shift(), but it wasn't making the cyclical thing.
You can combine reindex
with np.roll
:
X = X.reindex(np.roll(X.index, 1))
Another option is to combine concat
with iloc
:
shift = 1
X = pd.concat([X.iloc[-shift:], X.iloc[:-shift]])
The resulting output:
A B C D E t
4 26 82 13 14 34 5
0 34 54 56 0 78 1
1 12 87 78 23 12 2
2 78 35 0 72 31 3
3 84 25 14 56 0 4
Timings
Using the following setup to produce a larger DataFrame and functions for timing:
df = pd.concat([X]*10**5, ignore_index=True)
def root1(df, shift):
return df.reindex(np.roll(df.index, shift))
def root2(df, shift):
return pd.concat([df.iloc[-shift:], df.iloc[:-shift]])
def ed_chum(df, num):
return pd.DataFrame(np.roll(df, num, axis=0), np.roll(df.index, num), columns=df.columns)
def divakar1(df, shift):
return df.iloc[np.roll(np.arange(df.shape[0]), shift)]
def divakar2(df, shift):
idx = np.mod(np.arange(df.shape[0])-1,df.shape[0])
for _ in range(shift):
df = df.iloc[idx]
return df
I get the following timings:
%timeit root1(df.copy(), 25)
10 loops, best of 3: 61.3 ms per loop
%timeit root2(df.copy(), 25)
10 loops, best of 3: 26.4 ms per loop
%timeit ed_chum(df.copy(), 25)
10 loops, best of 3: 28.3 ms per loop
%timeit divakar1(df.copy(), 25)
10 loops, best of 3: 177 ms per loop
%timeit divakar2(df.copy(), 25)
1 loop, best of 3: 4.18 s per loop
You can use np.roll
in a custom func:
In [83]:
def roll(df, num):
return pd.DataFrame(np.roll(df,num,axis=0), np.roll(df.index, num), columns=df.columns)
roll(X,1)
Out[83]:
A B C D E t
4 26 82 13 14 34 5
0 34 54 56 0 78 1
1 12 87 78 23 12 2
2 78 35 0 72 31 3
3 84 25 14 56 0 4
In [84]:
roll(X,2)
Out[84]:
A B C D E t
3 84 25 14 56 0 4
4 26 82 13 14 34 5
0 34 54 56 0 78 1
1 12 87 78 23 12 2
2 78 35 0 72 31 3
Here we return a df using the rolled df array, with the index rolled also
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With