I want to use a strategy pattern to register a set of objects that implement a protocol. When I set this up, I get a compile error when trying to set the delegate that is part of the protocol.
For discussion purposes, I have slightly reworked the DiceGame from the Swift eBook's Delegation chapter. The changes of significance are:
We can set the delegate fine if we use the concrete class (snakesAndLadders). However, there is a compile error if we use 'let' to hold it as a protocol (diceGameAsLet) but it compiles if we hold the variable as a 'var' (diceGameAsVar).
It is easy to work around, however, the delegate itself never changes so should be held as a 'let' constant, as it is only the internal property that changes. I must not understand something (possibly subtle but significant) about protocols and how they work and should be used.
class Dice
{
func roll() -> Int
{
return 7 // always win :)
}
}
protocol DiceGame
{
// all DiceGames must work with a DiceGameDelegate
var delegate:DiceGameDelegate? {get set}
var dice: Dice {get}
func play()
}
protocol DiceGameDelegate
{
func gameDidStart( game:DiceGame )
func gameDidEnd( game:DiceGame )
}
class SnakesAndLadders:DiceGame
{
var delegate:DiceGameDelegate?
let dice = Dice()
func play()
{
delegate?.gameDidStart(self)
playGame()
delegate?.gameDidEnd(self)
}
private func playGame()
{
print("Playing the game here...")
}
}
class Games : DiceGameDelegate
{
let snakesAndLadders = SnakesAndLadders()
// hold the protocol, not the class
let diceGameAsLet:DiceGame = SnakesAndLadders()
var diceGameAsVar:DiceGame = SnakesAndLadders()
func setupDelegateAsClass()
{
// can assign the delegate if using the class
snakesAndLadders.delegate = self
}
func setupDelegateAsVar()
{
// if we use 'var' we can assign the delegate
diceGameAsVar.delegate = self
}
func setupDelegateAsLet()
{
// DOES NOT COMPILE - Why?
//
// We are not changing the dice game so want to use 'let', but it won't compile
// we are changing the delegate, which is declared as 'var' inside the protocol
diceGameAsLet.delegate = self
}
// MARK: - DiceGameDelegate
func gameDidStart( game:DiceGame )
{
print("Game Started")
}
func gameDidEnd( game:DiceGame )
{
print("Game Ended")
}
}
DiceGame
is a heterogeneous protocol that you're using as a type; Swift will treat this type as a value type, and hence (just as for a structures), changing its mutable properties will mutate also the instance of the protocol type itself.
If you, however, add the : class
keyword to the DiceGame
protocol, Swift will treat it as a reference type, allowing you to mutate members of instances of it, without mutating the instance itself. Note that this will constraint the protocol as conformable to only by class types.
protocol DiceGame: class { ... }
With the addition of the above, the mutation of immutable diceGameAsLet
:s properties will be allowed.
In this context, it's worth mentioning that the : class
keyword is usually used to constrain protocols used as delegates (e.g., DiceGameDelegate
in your example) as conformable to only by class types. With this additional constraint, the delegates can be used as types to which the delegate owner (e.g. some class) only hold a weak
reference, useful in contexts where a strong reference to the delegate could create a retain cycle.
See e.g. the 2nd part of this answer for details.
The issue is that when you store something as a Protocol
, even if it is a class, swift considers them to be a value
type, instead of the reference
type you are expecting them to be. Therefore, no part of it is allowed to be changed. Take a look at this reference for more information.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With