I want to control the precision for a double during a comparison, and then come back to default precision, with C++.
I intend to use setPrecision()
to set precision. What is then syntax, if any, to set precision back to default?
I am doing something like this
std::setPrecision(math.log10(m_FTOL));
I do some stuff, and I would like to come back to default double comparison right afterwards.
I modified like this, and I still have some errors
std::streamsize prec = std::ios_base::precision();
std::setprecision(cmath::log10(m_FTOL));
with cmath
false at compilation, and std::ios_base
also false at compilation. Could you help?
To set the precision in a floating-point, simply provide the number of significant figures (say n) required to the setprecision() function as an argument. The function will format the original value to the same number of significant figures (n in this case).
In C, there is a format specifier in C. To print 4 digits after dot, we can use 0.4f in printf().
You can get the precision before you change it, with std::ios_base::precision and then use that to change it back later. The code above shows two ways of setting the precision, first by calling std::cout. precision (N) and second by using a stream manipulator std::setprecision(N) .
Precision determines the accuracy of the real numbers and is denoted by the dot (.) symbol. The Exactness or Accuracy of real numbers is indicated by the number of digits after the decimal point. So, precision means the number of digits mentioned after the decimal point in the float number.
You can get the precision before you change it, with std::ios_base::precision
and then use that to change it back later.
You can see this in action with:
#include <ios>
#include <iostream>
#include <iomanip>
int main (void) {
double d = 3.141592653589;
std::streamsize ss = std::cout.precision();
std::cout << "Initial precision = " << ss << '\n';
std::cout << "Value = " << d << '\n';
std::cout.precision (10);
std::cout << "Longer value = " << d << '\n';
std::cout.precision (ss);
std::cout << "Original value = " << d << '\n';
std::cout << "Longer and original value = "
<< std::setprecision(10) << d << ' '
<< std::setprecision(ss) << d << '\n';
std::cout << "Original value = " << d << '\n';
return 0;
}
which outputs:
Initial precision = 6
Value = 3.14159
Longer value = 3.141592654
Original value = 3.14159
Longer and original value = 3.141592654 3.14159
Original value = 3.14159
The code above shows two ways of setting the precision, first by calling std::cout.precision (N)
and second by using a stream manipulator std::setprecision(N)
.
But you need to keep in mind that the precision is for outputting values via streams, it does not directly affect comparisons of the values themselves with code like:
if (val1== val2) ...
In other words, even though the output may be 3.14159
, the value itself is still the full 3.141592653590
(subject to normal floating point limitations, of course).
If you want to do that, you'll need to check if it's close enough rather than equal, with code such as:
if ((fabs (val1 - val2) < 0.0001) ...
Use C++20 std::format
and {:.2}
instead of std::setprecision
Finally, this will be the superior choice once you can use it:
#include <format>
#include <string>
int main() {
std::cout << std::format("{:.3} {:.4}\n", 3.1415, 3.1415);
}
Expected output:
3.14 3.145
This will therefore completely overcome the madness of modifying std::cout
state.
The existing fmt
library implements it for before it gets official support: https://github.com/fmtlib/fmt Install on Ubuntu 22.04:
sudo apt install libfmt-dev
Modify source to replace:
<format>
with <fmt/core.h>
std::format
to fmt::format
main.cpp
#include <iostream>
#include <fmt/core.h>
int main() {
std::cout << fmt::format("{:.3} {:.4}\n", 3.1415, 3.1415);
}
and compile and run with:
g++ -std=c++11 -o main.out main.cpp -lfmt
./main.out
Output:
3.14 3.142
See also:
Pre C++20/fmt::
: Save the entire state with std::ios::copyfmt
You might also want to restore the entire previous state with std::ios::copyfmt
in these situations, as explained at: Restore the state of std::cout after manipulating it
main.cpp
#include <iomanip>
#include <iostream>
int main() {
constexpr float pi = 3.14159265359;
constexpr float e = 2.71828182846;
// Sanity check default print.
std::cout << "default" << std::endl;
std::cout << pi << std::endl;
std::cout << e << std::endl;
std::cout << std::endl;
// Change precision format to scientific,
// and restore default afterwards.
std::cout << "modified" << std::endl;
std::ios cout_state(nullptr);
cout_state.copyfmt(std::cout);
std::cout << std::setprecision(2);
std::cout << std::scientific;
std::cout << pi << std::endl;
std::cout << e << std::endl;
std::cout.copyfmt(cout_state);
std::cout << std::endl;
// Check that cout state was restored.
std::cout << "restored" << std::endl;
std::cout << pi << std::endl;
std::cout << e << std::endl;
std::cout << std::endl;
}
GitHub upstream.
Compile and run:
g++ -ggdb3 -O0 -std=c++11 -Wall -Wextra -pedantic -o main.out main.cpp
./main.out
Output:
default
3.14159
2.71828
modified
3.14e+00
2.72e+00
restored
3.14159
2.71828
Tested on Ubuntu 19.04, GCC 8.3.0.
You need to keep track of your current precison and then reset back to the same once done with your operations with required modified precison. For this you can use std::ios_base::precision:
streamsize precision ( ) const;
streamsize precision ( streamsize prec );
The first syntax returns the value of the current floating-point precision field for the stream.
The second syntax also sets it to a new value.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With