Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Selecting specific rows and columns from NumPy array

People also ask

How do you select rows and columns in NumPy array?

We can use [][] operator to select an element from Numpy Array i.e. Example 1: Select the element at row index 1 and column index 2. Or we can pass the comma separated list of indices representing row index & column index too i.e.

How do you select a specific element in a NumPy array?

To select an element from Numpy Array , we can use [] operator i.e. It will return the element at given index only.

How do I randomly select rows from NumPy array?

The shuffle() function shuffles the rows of an array randomly and then we will display a random row of the 2D array.


As Toan suggests, a simple hack would be to just select the rows first, and then select the columns over that.

>>> a[[0,1,3], :]            # Returns the rows you want
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [12, 13, 14, 15]])
>>> a[[0,1,3], :][:, [0,2]]  # Selects the columns you want as well
array([[ 0,  2],
       [ 4,  6],
       [12, 14]])

[Edit] The built-in method: np.ix_

I recently discovered that numpy gives you an in-built one-liner to doing exactly what @Jaime suggested, but without having to use broadcasting syntax (which suffers from lack of readability). From the docs:

Using ix_ one can quickly construct index arrays that will index the cross product. a[np.ix_([1,3],[2,5])] returns the array [[a[1,2] a[1,5]], [a[3,2] a[3,5]]].

So you use it like this:

>>> a = np.arange(20).reshape((5,4))
>>> a[np.ix_([0,1,3], [0,2])]
array([[ 0,  2],
       [ 4,  6],
       [12, 14]])

And the way it works is that it takes care of aligning arrays the way Jaime suggested, so that broadcasting happens properly:

>>> np.ix_([0,1,3], [0,2])
(array([[0],
        [1],
        [3]]), array([[0, 2]]))

Also, as MikeC says in a comment, np.ix_ has the advantage of returning a view, which my first (pre-edit) answer did not. This means you can now assign to the indexed array:

>>> a[np.ix_([0,1,3], [0,2])] = -1
>>> a    
array([[-1,  1, -1,  3],
       [-1,  5, -1,  7],
       [ 8,  9, 10, 11],
       [-1, 13, -1, 15],
       [16, 17, 18, 19]])

Fancy indexing requires you to provide all indices for each dimension. You are providing 3 indices for the first one, and only 2 for the second one, hence the error. You want to do something like this:

>>> a[[[0, 0], [1, 1], [3, 3]], [[0,2], [0,2], [0, 2]]]
array([[ 0,  2],
       [ 4,  6],
       [12, 14]])

That is of course a pain to write, so you can let broadcasting help you:

>>> a[[[0], [1], [3]], [0, 2]]
array([[ 0,  2],
       [ 4,  6],
       [12, 14]])

This is much simpler to do if you index with arrays, not lists:

>>> row_idx = np.array([0, 1, 3])
>>> col_idx = np.array([0, 2])
>>> a[row_idx[:, None], col_idx]
array([[ 0,  2],
       [ 4,  6],
       [12, 14]])

USE:

 >>> a[[0,1,3]][:,[0,2]]
array([[ 0,  2],
   [ 4,  6],
   [12, 14]])

OR:

>>> a[[0,1,3],::2]
array([[ 0,  2],
   [ 4,  6],
   [12, 14]])

Using np.ix_ is the most convenient way to do it (as answered by others), but it also can be done as follows:

>>> rows = [0, 1, 3]
>>> cols = [0, 2]

>>> (a[rows].T)[cols].T

array([[ 0,  2],
       [ 4,  6],
       [12, 14]])