I'm selecting several columns of a dataframe, by a list of the column names. This works fine if all elements of the list are in the dataframe. But if some elements of the list are not in the DataFrame, then it will generate the error "not in index".
Is there a way to select all columns which included in that list, even if not all elements of the list are included in the dataframe? Here is some sample data which generates the above error:
df = pd.DataFrame( [[0,1,2]], columns=list('ABC') ) lst = list('ARB') data = df[lst] # error: not in index
I think you need Index.intersection
:
df = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9], 'D':[1,3,5], 'E':[5,3,6], 'F':[7,4,3]}) print (df) A B C D E F 0 1 4 7 1 5 7 1 2 5 8 3 3 4 2 3 6 9 5 6 3 lst = ['A','R','B'] print (df.columns.intersection(lst)) Index(['A', 'B'], dtype='object') data = df[df.columns.intersection(lst)] print (data) A B 0 1 4 1 2 5 2 3 6
Another solution with numpy.intersect1d
:
data = df[np.intersect1d(df.columns, lst)] print (data) A B 0 1 4 1 2 5 2 3 6
Few other ways, and list comprehension is much faster
In [1357]: df[df.columns & lst] Out[1357]: A B 0 1 4 1 2 5 2 3 6 In [1358]: df[[c for c in df.columns if c in lst]] Out[1358]: A B 0 1 4 1 2 5 2 3 6
Timings
In [1360]: %timeit [c for c in df.columns if c in lst] 100000 loops, best of 3: 2.54 µs per loop In [1359]: %timeit df.columns & lst 1000 loops, best of 3: 231 µs per loop In [1362]: %timeit df.columns.intersection(lst) 1000 loops, best of 3: 236 µs per loop In [1363]: %timeit np.intersect1d(df.columns, lst) 10000 loops, best of 3: 26.6 µs per loop
Details
In [1365]: df Out[1365]: A B C D E F 0 1 4 7 1 5 7 1 2 5 8 3 3 4 2 3 6 9 5 6 3 In [1366]: lst Out[1366]: ['A', 'R', 'B']
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With