To select the rows, the syntax is df. loc[start:stop:step] ; where start is the name of the first-row label to take, stop is the name of the last row label to take, and step as the number of indices to advance after each extraction; for example, you can use it to select alternate rows.
echoing @HYRY, see the new docs in 0.11
http://pandas.pydata.org/pandas-docs/stable/indexing.html
Here we have new operators, .iloc
to explicity support only integer indexing, and .loc
to explicity support only label indexing
e.g. imagine this scenario
In [1]: df = pd.DataFrame(np.random.rand(5,2),index=range(0,10,2),columns=list('AB'))
In [2]: df
Out[2]:
A B
0 1.068932 -0.794307
2 -0.470056 1.192211
4 -0.284561 0.756029
6 1.037563 -0.267820
8 -0.538478 -0.800654
In [5]: df.iloc[[2]]
Out[5]:
A B
4 -0.284561 0.756029
In [6]: df.loc[[2]]
Out[6]:
A B
2 -0.470056 1.192211
[]
slices the rows (by label location) only
[]
is to select columns.When the indexing operator is passed a string or integer, it attempts to find a column with that particular name and return it as a Series.
So, in the question above: df[2]
searches for a column name matching the integer value 2
. This column does not exist and a KeyError
is raised.
Strangely, when given a slice, the DataFrame indexing operator selects rows and can do so by integer location or by index label.
df[2:3]
This will slice beginning from the row with integer location 2 up to 3, exclusive of the last element. So, just a single row. The following selects rows beginning at integer location 6 up to but not including 20 by every third row.
df[6:20:3]
You can also use slices consisting of string labels if your DataFrame index has strings in it. For more details, see this solution on .iloc vs .loc.
I almost never use this slice notation with the indexing operator as its not explicit and hardly ever used. When slicing by rows, stick with .loc/.iloc
.
You can think DataFrame as a dict of Series. df[key]
try to select the column index by key
and returns a Series object.
However slicing inside of [] slices the rows, because it's a very common operation.
You can read the document for detail:
http://pandas.pydata.org/pandas-docs/stable/indexing.html#basics
To index-based access to the pandas table, one can also consider numpy.as_array option to convert the table to Numpy array as
np_df = df.as_matrix()
and then
np_df[i]
would work.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With