I have been trying this:
Here is the code using a pandas dataframe filled with random values
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(20,5), columns=["A","B","C","D", "E"])
a = list(df.columns.values)
a.remove("A")
X = df[a]
y = df["A"]
X_train = X.iloc[0: floor(2 * len(X) /3)]
X_test = X.iloc[floor(2 * len(X) /3):]
y_train = y.iloc[0: floor(2 * len(y) /3)]
y_test = y.iloc[floor(2 * len(y) /3):]
# normalise
from sklearn import preprocessing
X_trainS = preprocessing.scale(X_train)
X_trainN = pd.DataFrame(X_trainS, columns=a)
X_testS = preprocessing.scale(X_test)
X_testN = pd.DataFrame(X_testS, columns=a)
y_trainS = preprocessing.scale(y_train)
y_trainN = pd.DataFrame(y_trainS)
y_testS = preprocessing.scale(y_test)
y_testN = pd.DataFrame(y_testS)
import sklearn
from sklearn.svm import SVR
clf = SVR(kernel='rbf', C=1e3, gamma=0.1)
pred = clf.fit(X_trainN,y_trainN).predict(X_testN)
gives this error:
C:\Anaconda3\lib\site-packages\pandas\core\index.py:542: FutureWarning: slice indexers when using iloc should be integers and not floating point "and not floating point",FutureWarning) --------------------------------------------------------------------------- ValueError Traceback (most recent call last) in () 34 clf = SVR(kernel='rbf', C=1e3, gamma=0.1) 35 ---> 36 pred = clf.fit(X_trainN,y_trainN).predict(X_testN) 37
C:\Anaconda3\lib\site-packages\sklearn\svm\base.py in fit(self, X, y, sample_weight) 174 175 seed = rnd.randint(np.iinfo('i').max) --> 176 fit(X, y, sample_weight, solver_type, kernel, random_seed=seed) 177 # see comment on the other call to np.iinfo in this file 178
C:\Anaconda3\lib\site-packages\sklearn\svm\base.py in _dense_fit(self, X, y, sample_weight, solver_type, kernel, random_seed) 229 cache_size=self.cache_size, coef0=self.coef0, 230 gamma=self._gamma, epsilon=self.epsilon, --> 231 max_iter=self.max_iter, random_seed=random_seed) 232 233 self._warn_from_fit_status()
C:\Anaconda3\lib\site-packages\sklearn\svm\libsvm.pyd in sklearn.svm.libsvm.fit (sklearn\svm\libsvm.c:1864)()
ValueError: Buffer has wrong number of dimensions (expected 1, got 2)
I am not sure why. Can anyone explain? I think it has something to with converting back to dataframes after preprocessing.
The error here is in the df you pass as your labels: y_trainN
if you compare against the sample docs version and your code:
In [40]:
n_samples, n_features = 10, 5
np.random.seed(0)
y = np.random.randn(n_samples)
print(y)
y_trainN.values
[ 1.76405235 0.40015721 0.97873798 2.2408932 1.86755799 -0.97727788
0.95008842 -0.15135721 -0.10321885 0.4105985 ]
Out[40]:
array([[-0.06680594],
[ 0.23535043],
[-1.49265082],
[ 1.22537862],
[-0.46499134],
[-0.23744759],
[ 1.40520679],
[ 0.95882677],
[ 1.66996413],
[-0.37515955],
[-0.75826444],
[-1.45945337],
[-0.63995369]])
So you can either call squeeze
to produce a series or select the only column in the df in order for there to be no errors:
pred = clf.fit(X_trainN,y_trainN[0]).predict(X_testN)
or
pred = clf.fit(X_trainN,y_trainN.squeeze()).predict(X_testN)
so we could argue that for a df with only a single column it should return something that can then be coerced into a numpy array or that numpy is not calling the array attribute correctly but really you should pass a series or select the column from a df as the params
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With