I would like to scale the markersize
of matplotlib.pyplot.Axes.scatter
plot based on the number of points on the x/y-axis.
import matplotlib.pyplot as plt
import numpy as np
vmin = 1
vmax = 11
x = np.random.randint(vmin, vmax, 5)
y = np.random.randint(vmin, vmax, 5)
fig, ax = plt.subplots()
for v in np.arange(vmin, vmax):
ax.axvline(v - 0.5)
ax.axvline(v + 0.5)
ax.axhline(v - 0.5)
ax.axhline(v + 0.5)
ax.set_xlim(vmin - 0.5, vmax + 0.5)
ax.set_ylim(vmin - 0.5, vmax + 0.5)
ax.scatter(x, y)
ax.set_aspect(1)
plt.show()
ax
is always using an equal aspect ratio and both axes have the same lim
values.
Currently, running the above generates the following plot ...
...and changing the value of vmax = 41
The markersize
in both plots is left to the default, i.e. markersize=6
.
My question is, how could I compute the markersize
value so the marker
s touch the edges of each cell? (Each cell has a maximum of one data point.)
MatPlotLib with Python To change the range of X and Y axes, we can use xlim() and ylim() methods.
Import matplotlib. To set x-axis scale to log, use xscale() function and pass log to it. To plot the graph, use plot() function. To set the limits of the x-axis, use xlim() function and pass max and min value to it. To set the limits of the y-axis, use ylim() function and pass top and bottom value to it.
An easy option is to replace the scatter by a PatchCollection
consisting of Circles
of radius 0.5.
circles = [plt.Circle((xi,yi), radius=0.5, linewidth=0) for xi,yi in zip(x,y)]
c = matplotlib.collections.PatchCollection(circles)
ax.add_collection(c)
The alternative, if a scatter plot is desired, would be to update the markersize to be in data units.
The easy solution here would be to first draw the figure once, then take the axes size and calculate the markersize in points from it.
import matplotlib.pyplot as plt
import numpy as np
vmin = 1
vmax = 11
x = np.random.randint(vmin, vmax, 5)
y = np.random.randint(vmin, vmax, 5)
fig, ax = plt.subplots(dpi=141)
for v in np.arange(vmin, vmax):
ax.axvline(v - 0.5)
ax.axvline(v + 0.5)
ax.axhline(v - 0.5)
ax.axhline(v + 0.5)
ax.set_xlim(vmin - 0.5, vmax + 0.5)
ax.set_ylim(vmin - 0.5, vmax + 0.5)
ax.set_aspect(1)
fig.canvas.draw()
s = ((ax.get_window_extent().width / (vmax-vmin+1.) * 72./fig.dpi) ** 2)
ax.scatter(x, y, s = s, linewidth=0)
plt.show()
For some background on how markersize of scatters is used, see e.g. this answer. The drawback of the above solution is that is fixes the marker size to the size and state of the plot. In case the axes limits would change or the plot is zoomed, the scatter plot would again have the wrong sizing.
Hence the following solution would be more generic. This is a little involved and would work similarly as Plotting a line with width in data units.
import matplotlib.pyplot as plt
import numpy as np
vmin = 1
vmax = 32
x = np.random.randint(vmin, vmax, 5)
y = np.random.randint(vmin, vmax, 5)
fig, ax = plt.subplots()
for v in np.arange(vmin, vmax):
ax.axvline(v - 0.5)
ax.axvline(v + 0.5)
ax.axhline(v - 0.5)
ax.axhline(v + 0.5)
ax.set_xlim(vmin - 0.5, vmax + 0.5)
ax.set_ylim(vmin - 0.5, vmax + 0.5)
class scatter():
def __init__(self,x,y,ax,size=1,**kwargs):
self.n = len(x)
self.ax = ax
self.ax.figure.canvas.draw()
self.size_data=size
self.size = size
self.sc = ax.scatter(x,y,s=self.size,**kwargs)
self._resize()
self.cid = ax.figure.canvas.mpl_connect('draw_event', self._resize)
def _resize(self,event=None):
ppd=72./self.ax.figure.dpi
trans = self.ax.transData.transform
s = ((trans((1,self.size_data))-trans((0,0)))*ppd)[1]
if s != self.size:
self.sc.set_sizes(s**2*np.ones(self.n))
self.size = s
self._redraw_later()
def _redraw_later(self):
self.timer = self.ax.figure.canvas.new_timer(interval=10)
self.timer.single_shot = True
self.timer.add_callback(lambda : self.ax.figure.canvas.draw_idle())
self.timer.start()
sc = scatter(x,y,ax, linewidth=0)
ax.set_aspect(1)
plt.show()
(I updated the code to use a timer to redraw the canvas, due to this issue)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With