In the following code:
# Load dataset
iris = datasets.load_iris()
X, y = iris.data, iris.target
rf_feature_imp = RandomForestClassifier(100)
feat_selection = SelectFromModel(rf_feature_imp, threshold=0.5)
clf = RandomForestClassifier(5000)
model = Pipeline([
('fs', feat_selection),
('clf', clf),
])
params = {
'fs__threshold': [0.5, 0.3, 0.7],
'fs__estimator__max_features': ['auto', 'sqrt', 'log2'],
'clf__max_features': ['auto', 'sqrt', 'log2'],
}
gs = GridSearchCV(model, params, ...)
gs.fit(X,y)
What should be used for a prediction?
gs
?gs.best_estimator_
?
orgs.best_estimator_.named_steps['clf']
?What is the difference between these 3?
GridSearchCV tries all the combinations of the values passed in the dictionary and evaluates the model for each combination using the Cross-Validation method. Hence after using this function we get accuracy/loss for every combination of hyperparameters and we can choose the one with the best performance.
param_grid – A dictionary with parameter names as keys and lists of parameter values. 3. scoring – The performance measure. For example, 'r2' for regression models, 'precision' for classification models.
gs.predict(X_test)
is equivalent to gs.best_estimator_.predict(X_test)
. Using either, X_test
will be passed through your entire pipeline and it will return the predictions.
gs.best_estimator_.named_steps['clf'].predict()
, however is only the last phase of the pipeline. To use it, the feature selection step must already have been performed. This would only work if you have previously run your data through gs.best_estimator_.named_steps['fs'].transform()
Three equivalent methods for generating predictions are shown below:
Using gs
directly.
pred = gs.predict(X_test)
Using best_estimator_
.
pred = gs.best_estimator_.predict(X_test)
Calling each step in the pipeline individual.
X_test_fs = gs.best_estimator_.named_steps['fs'].transform(X_test)
pred = gs.best_estimator_.named_steps['clf'].predict(X_test_fs)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With