I have a basic Android TensorFlowInference
example that runs fine in a single thread.
public class InferenceExample {
private static final String MODEL_FILE = "file:///android_asset/model.pb";
private static final String INPUT_NODE = "intput_node0";
private static final String OUTPUT_NODE = "output_node0";
private static final int[] INPUT_SIZE = {1, 8000, 1};
public static final int CHUNK_SIZE = 8000;
public static final int STRIDE = 4;
private static final int NUM_OUTPUT_STATES = 5;
private static TensorFlowInferenceInterface inferenceInterface;
public InferenceExample(final Context context) {
inferenceInterface = new TensorFlowInferenceInterface(context.getAssets(), MODEL_FILE);
}
public float[] run(float[] data) {
float[] res = new float[CHUNK_SIZE / STRIDE * NUM_OUTPUT_STATES];
inferenceInterface.feed(INPUT_NODE, data, INPUT_SIZE[0], INPUT_SIZE[1], INPUT_SIZE[2]);
inferenceInterface.run(new String[]{OUTPUT_NODE});
inferenceInterface.fetch(OUTPUT_NODE, res);
return res;
}
}
The example crashes with various exceptions including java.lang.ArrayIndexOutOfBoundsException
and java.lang.NullPointerException
when running in a ThreadPool
as per the below example so I guess it's not thread safe.
InferenceExample inference = new InferenceExample(context);
ExecutorService executor = Executors.newFixedThreadPool(NUMBER_OF_CORES);
Collection<Future<?>> futures = new LinkedList<Future<?>>();
for (int i = 1; i <= 100; i++) {
Future<?> result = executor.submit(new Runnable() {
public void run() {
inference.call(randomData);
}
});
futures.add(result);
}
for (Future<?> future:futures) {
try { future.get(); }
catch(ExecutionException | InterruptedException e) {
Log.e("TF", e.getMessage());
}
}
Is it possible to leverage multicore Android devices with TensorFlowInferenceInterface
?
To make the InferenceExample
thread safe I changed the TensorFlowInferenceInterface
from static
and made the run
method synchronized
:
private TensorFlowInferenceInterface inferenceInterface;
public InferenceExample(final Context context) {
inferenceInterface = new TensorFlowInferenceInterface(assets, model);
}
public synchronized float[] run(float[] data) { ... }
Then I round robin a list of InterferenceExample
instance across numThreads
.
for (int i = 1; i <= 100; i++) {
final int id = i % numThreads;
Future<?> result = executor.submit(new Runnable() {
public void run() {
list.get(id).run(data);
}
});
futures.add(result);
}
This does increase performance however
on a 8 core device this peaks at numThreads
of 2 and only shows ~50% CPU usage in Android Studio Monitor.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With