I'm looking for a speedy algorithm to find the roots of a univariate polynomial in a prime finite field.
That is, if f = a0 + a1x + a2x2 + ... + anxn
(n > 0) then an algorithm that finds all r < p
satisfying f(r) = 0 mod p
, for a given prime p.
I found Chiens search algorithm https://en.wikipedia.org/wiki/Chien_search but I can't imagine this being that fast for primes greater than 20 bits. Does anyone have experience with Chien's search algorithm or know a faster way? Is there a sympy module for this?
This is pretty well studied, as mcdowella's comment indicates. Here is how the Cantor-Zassenhaus random algorithm works for the case where you want to find the roots of a polynomial, instead of the more general factorization.
Note that in the ring of polynomials with coefficients mod p, the product x(x-1)(x-2)...(x-p+1) has all possible roots, and equals x^p-x by Fermat's Little Theorem and unique factorization in this ring.
Set g = GCD(f,x^p-x). Using Euclid's algorithm to compute the GCD of two polynomials is fast in general, taking a number of steps that is logarithmic in the maximum degree. It does not require you to factor the polynomials. g has the same roots as f in the field, and no repeated factors.
Because of the special form of x^p-x, with only two nonzero terms, the first step of Euclid's algorithm can be done by repeated squaring, in about 2 log_2 (p) steps involving only polynomials of degree no more than twice the degree of f, with coefficients mod p. We may compute x mod f, x^2 mod f, x^4 mod f, etc, then multiply together the terms corresponding to nonzero places in the binary expansion of p to compute x^p mod f, and finally subtract x.
Repeatedly do the following: Choose a random d in Z/p. Compute the GCD of g with r_d = (x+d)^((p-1)/2)-1, which we can again compute rapidly by Euclid's algorithm, using repeated squaring on the first step. If the degree of this GCD is strictly between 0 and the degree of g, we have found a nontrivial factor of g, and we can recurse until we have found the linear factors hence roots of g and thus f.
How often does this work? r_d has as roots the numbers that are d less than a nonzero square mod p. Consider two distinct roots of g, a and b, so (x-a) and (x-b) are factors of g. If a+d is a nonzero square, and b+d is not, then (x-a) is a common factor of g and r_d, while (x-b) is not, which means GCD(g,r_d) is a nontrivial factor of g. Similarly, if b+d is a nonzero square while a+d is not, then (x-b) is a common factor of g and r_d while (x-a) is not. By number theory, one case or the other happens close to half of the possible choices for d, which means that on average it takes a constant number of choices of d before we find a nontrivial factor of g, in fact one separating (x-a) from (x-b).
Your answers are good, but I think I found a wonderful method to find the roots modulo any number: This method based on "LATTICES". Let r ≤ R be a root of mod p. We must find another function such as h(x) such that h isn't large and r is root of h. Lattice method find this function. At the first time, we must create a basis of polynomial for lattice and then, with "LLL" algorithm, we find a "shortest vector" that has root r without modulo p. In fact, we eliminate modulo p with this way.
For more explanation, refer to "Coppersmith D. Finding small solutions to small degree polynomials. In Cryptography and lattices".
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With