Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

RGB to greyscale conversion using CUDA

Tags:

c++

opencv

cuda

So I am trying to write a program that turns RGB images to greyscale. I got the idea from the Udacity problem set. The problem is that when I write out the kernel in the Udacity web environment, it says my code works, however, when I try to do it locally on my computer, I get no errors, but my image instead of coming out greyscale, comes out completely grey. It looks like one grey box the dimensions of the image I loaded. Can you help me find the error in my code, I've compared it with the Udacity version and I can't seem to find it.

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <string>
#include <cuda.h>
#include <stdio.h>
#include <opencv\cv.h>
#include <opencv\highgui.h>
#include <iostream>



#define CUDA_ERROR_CHECK

#define CudaSafeCall( err ) __cudaSafeCall( err, __FILE__, __LINE__ )
#define CudaCheckError()    __cudaCheckError( __FILE__, __LINE__ )

inline void __cudaSafeCall(cudaError err, const char *file, const int line)
{
#ifdef CUDA_ERROR_CHECK
    if (cudaSuccess != err)
    {
        fprintf(stderr, "cudaSafeCall() failed at %s:%i : %s\n",
            file, line, cudaGetErrorString(err));
        exit(-1);
    }
#endif

    return;
}

inline void __cudaCheckError(const char *file, const int line)
{
#ifdef CUDA_ERROR_CHECK
    cudaError err = cudaGetLastError();
    if (cudaSuccess != err)
    {
        fprintf(stderr, "cudaCheckError() failed at %s:%i : %s\n",
            file, line, cudaGetErrorString(err));
        exit(-1);
    }


    err = cudaDeviceSynchronize();
    if (cudaSuccess != err)
    {
        fprintf(stderr, "cudaCheckError() with sync failed at %s:%i : %s\n",
            file, line, cudaGetErrorString(err));
        exit(-1);
    }
#endif

    return;
}

__global__ void rgb_2_grey(uchar* const greyImage, const uchar4* const rgbImage, int rows, int columns)
{
    int rgb_x = blockIdx.x * blockDim.x + threadIdx.x; //x coordinate of pixel
    int rgb_y = blockIdx.y * blockDim.y + threadIdx.y; //y coordinate of pixel

    if ((rgb_x >= columns) && (rgb_y >= rows)) {
        return;
    }

    int rgb_ab = rgb_y*columns + rgb_x; //absolute pixel position
    uchar4 rgb_Img = rgbImage[rgb_ab];
    greyImage[rgb_ab] = uchar((float(rgb_Img.x))*0.299f + (float(rgb_Img.y))*0.587f + (float(rgb_Img.z))*0.114f);
}
using namespace cv;
using namespace std;

void Proc_Img(uchar4** h_RGBImage, uchar** h_greyImage, uchar4 **d_RGBImage, uchar** d_greyImage);
void RGB_2_Greyscale(uchar* const d_greyImage, uchar4* const d_RGBImage, size_t num_Rows, size_t num_Cols);
void Save_Img();

Mat img_RGB;
Mat img_Grey;
uchar4 *d_rgbImg;
uchar *d_greyImg; 
int main()
{
        uchar4* h_rgbImg;
        //uchar4* d_rgbImge=0;
        uchar* h_greyImg;
        //uchar* d_greyImge=0;

        Proc_Img(&h_rgbImg, &h_greyImg, &d_rgbImg, &d_greyImg);
        RGB_2_Greyscale(d_greyImg, d_rgbImg, img_RGB.rows, img_RGB.cols);
        Save_Img();





    return 0;
}
void Proc_Img(uchar4** h_RGBImage, uchar** h_greyImage, uchar4 **d_RGBImage, uchar** d_greyImage){
    cudaFree(0);
    CudaCheckError();

    //loads image into a matrix object along with the colors in BGR format (must convert to rgb).
    Mat img = imread("C:\\Users\\Austin\\Pictures\\wallpapers\\IMG_3581.JPG", CV_LOAD_IMAGE_COLOR);
    if (img.empty()){
        cerr << "couldnt open file dumbas..." << "C:\\Users\\Austin\\Pictures\\wallpapers\\IMG_3581.JPG" << endl;
        exit(1);
    }

    //converts color type from BGR to RGB
    cvtColor(img, img_RGB, CV_BGR2RGBA);

    //allocate memory for new greyscale image. 
    //img.rows returns the range of pixels in y, img.cols returns range of pixels in x
    //CV_8UC1 means 8 bit unsigned(non-negative) single channel of color, aka greyscale.
    //all three of the parameters allow the create function in the Mat class to determine how much memory to allocate
    img_Grey.create(img.rows, img.cols, CV_8UC1);

    //creates rgb and greyscale image arrays
    *h_RGBImage = (uchar4*)img_RGB.ptr<uchar>(0); //.ptr is a method in the mat class that returns a pointer to the first element of the matrix.
    *h_greyImage = (uchar*)img_Grey.ptr<uchar>(0);        //this is just like a regular array/pointer mem address to first element of the array. This is templated
                                                          //in this case the compiler runs the function for returning pointer of type unsigned char. for rgb image it is
                                                          //cast to uchar4 struct to hold r,g, and b values.

    const size_t num_pix = (img_RGB.rows) * (img_RGB.cols); //amount of pixels 

    //allocate memory on gpu
    cudaMalloc(d_RGBImage, sizeof(uchar4) * num_pix); //bites of 1 uchar4 times # of pixels gives number of bites necessary for array
    CudaCheckError();
    cudaMalloc(d_greyImage, sizeof(uchar) * num_pix);//bites of uchar times # pixels gives number of bites necessary for array
    CudaCheckError();
    cudaMemset(*d_greyImage, 0, sizeof(uchar) * num_pix);
    CudaCheckError();


    //copy array into allocated space
    cudaMemcpy(*d_RGBImage, *h_RGBImage, sizeof(uchar4)*num_pix, cudaMemcpyHostToDevice);
    CudaCheckError();


    d_rgbImg = *d_RGBImage;
    d_greyImg = *d_greyImage; 
}


void RGB_2_Greyscale(uchar* const d_greyImage, uchar4* const d_RGBImage, size_t num_Rows, size_t num_Cols){

    const int BS = 16;
    const dim3 blockSize(BS, BS);
    const dim3 gridSize((num_Cols / BS) + 1, (num_Rows / BS) + 1); 

    rgb_2_grey <<<gridSize, blockSize>>>(d_greyImage, d_RGBImage, num_Rows, num_Cols);

    cudaDeviceSynchronize(); CudaCheckError();


}



void Save_Img(){

    const size_t num_pix = (img_RGB.rows) * (img_RGB.cols);
    cudaMemcpy(img_Grey.ptr<uchar>(0), d_greyImg, sizeof(uchar)*num_pix, cudaMemcpyDeviceToHost);
    CudaCheckError();


    imwrite("C:\\Users\\Austin\\Pictures\\wallpapers\\IMG_3581GR.JPG", img_Grey);

    cudaFree(d_rgbImg);
    cudaFree(d_greyImg);

}

EDIT: I realized that the local var in my main is the same name as the global var, I have edited the code here, now I get the error from visual studio that the

variable d_rgbIme is being used without being initialized

when I have already initialized it above. If I set them equal to zero I get a CUDA error saying

an illegal memory access was encountered

I tried running cuda-memcheck, but then I get the error that i could not run the file...

like image 358
tinman248 Avatar asked Aug 14 '14 05:08

tinman248


People also ask

How do I convert RGB pixels to grayscale?

You just have to take the average of three colors. Since its an RGB image, so it means that you have add r with g with b and then divide it by 3 to get your desired grayscale image. Its done in this way.

How do I convert RGB to grayscale in Python?

Convert an Image to Grayscale in Python Using the Conversion Formula and the Matplotlib Library. We can also convert an image to grayscale using the standard RGB to grayscale conversion formula that is imgGray = 0.2989 * R + 0.5870 * G + 0.1140 * B .

How do I convert a color image to grayscale?

Right-click the picture that you want to change, and then click Format Picture on the shortcut menu. Click the Picture tab. Under Image control, in the Color list, click Grayscale or Black and White.


1 Answers

I have found the error thanks to one of the comments by Robert Crovella, he has been very helpful with this! it is in my kernel the if statement should read if ((rgb_x >= columns) || (rgb_y >= rows)) {

like image 105
tinman248 Avatar answered Oct 22 '22 11:10

tinman248