Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Reverse Label Encoding giving error

I label encoded my categorical data into numerical data using label encoder

data['Resi'] = LabelEncoder().fit_transform(data['Resi'])

But I when I try to find how they are mapped internally using

list(LabelEncoder.inverse_transform(data['Resi']))

I am getting below error


TypeError                                 Traceback (most recent call last)
<ipython-input-67-419ab6db89e2> in <module>()
----> 1 list(LabelEncoder.inverse_transform(data['Resi']))

TypeError: inverse_transform() missing 1 required positional argument: 'y'

How to fix this

Sample data

Resi
IP
IP
IP
IP
IP
IE
IP
IP
IP
IP
IP
IPD
IE
IE
IP
IE
IP
IP
IP
like image 762
NgBrandon Avatar asked Nov 02 '17 05:11

NgBrandon


2 Answers

You can check label encoding:

>>> from sklearn import preprocessing
>>> le = preprocessing.LabelEncoder()
>>> le.fit([1, 2, 2, 6])
LabelEncoder()
>>> le.classes_
array([1, 2, 6])
>>> le.transform([1, 1, 2, 6])
array([0, 0, 1, 2])
>>> le.inverse_transform([0, 0, 1, 2])
array([1, 1, 2, 6])

And for your solution:

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder().fit(data['Resi'])
data['Resi'] = le.transform(data['Resi'])
print (data.tail())
    Resi
14     1
15     0
16     1
17     1
18     1

L = list(le.inverse_transform(data['Resi']))
print (L)
['IP', 'IP', 'IP', 'IP', 'IP', 'IE', 'IP', 'IP', 'IP', 
 'IP', 'IP', 'IPD', 'IE', 'IE', 'IP', 'IE', 'IP', 'IP', 'IP']

EDIT:

d = dict(zip(le.classes_, le.transform(le.classes_)))
print (d)
{'IE': 0, 'IPD': 2, 'IP': 1}
like image 197
jezrael Avatar answered Oct 07 '22 17:10

jezrael


You are not storing the LabelEncoder() object anywhere. You need to save it like this:

le = LabelEncoder()

And then call fit(), or transform().

import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder

ls = ['IP', 'IP', 'IP', 'IP', 'IP', 'IE', 'IP', 'IP', 'IP', 'IP', 'IP', 'IPD', 'IE', 'IE', 'IP', 'IE', 'IP', 'IP', 'IP']

data = pd.DataFrame(np.array(ls).reshape(-1,1), columns=['Resi'])

le = LabelEncoder()
data['Resi'] = le.fit_transform(data['Resi'])

df['resi'] = LabelEncoder().fit_transform(df['resi'])
list(le.inverse_transform(data['Resi']))

Out: 
['IP',
 'IP',
 'IP',
 'IP',
 'IP',
 'IE',
 'IP',
 'IP',
 'IP',
 'IP',
 'IP',
 'IPD',
 'IE',
 'IE',
 'IP',
 'IE',
 'IP',
 'IP',
 'IP']
like image 41
Vivek Kumar Avatar answered Oct 07 '22 17:10

Vivek Kumar