I'm still newbie in tensorflow so I'm sorry if this is a naive question. I'm trying to use the inception_V4
model pretrained on ImageNet
dataset published on this site. Also, I'm using their network as it is, I mean the one published on their site.
Here is how I call the network:
def network(images_op, keep_prob):
width_needed_InceptionV4Net = 342
shape = images_op.get_shape().as_list()
H = int(round(width_needed_InceptionV4Net * shape[1] / shape[2], 2))
resized_images = tf.image.resize_images(images_op, [width_needed_InceptionV4Net, H], tf.image.ResizeMethod.BILINEAR)
with slim.arg_scope(inception.inception_v4_arg_scope()):
logits, _ = inception.inception_v4(resized_images, num_classes=20, is_training=True, dropout_keep_prob = keep_prob)
return logits
Since I need to retrain the Inception_V4
's final layer for my categories, I modified the number of classes to be 20 as you can see in the method call (inception.inception_v4
).
Here is the train method I have so far:
def optimistic_restore(session, save_file, flags):
reader = tf.train.NewCheckpointReader(save_file)
saved_shapes = reader.get_variable_to_shape_map()
var_names = sorted([(var.name, var.name.split(':')[0]) for var in tf.global_variables()
if var.name.split(':')[0] in saved_shapes])
restore_vars = []
name2var = dict(zip(map(lambda x:x.name.split(':')[0], tf.global_variables()), tf.global_variables()))
if flags.checkpoint_exclude_scopes is not None:
exclusions = [scope.strip() for scope in flags.checkpoint_exclude_scopes.split(',')]
with tf.variable_scope('', reuse=True):
variables_to_init = []
for var_name, saved_var_name in var_names:
curr_var = name2var[saved_var_name]
var_shape = curr_var.get_shape().as_list()
if var_shape == saved_shapes[saved_var_name]:
print(saved_var_name)
excluded = False
for exclusion in exclusions:
if saved_var_name.startswith(exclusion):
variables_to_init.append(var)
excluded = True
break
if not excluded:
restore_vars.append(curr_var)
saver = tf.train.Saver(restore_vars)
saver.restore(session, save_file)
def train(images, ids, labels, total_num_examples, batch_size, train_dir, network, flags,
optimizer, log_periods, resume):
"""!@brief Trains the network for a number of steps.
@param images image tensor
@param ids id tensor
@param labels label tensor
@param total_num_examples total number of training examples
@param batch_size batch size
@param train_dir directory where checkpoints should be saved
@param network pointer to a function describing the network
@param flags command-line arguments
@param optimizer pointer to the optimization class
@param log_periods list containing the step intervals at which 1) logs should be printed,
2) logs should be saved for TensorBoard and 3) variables should be saved
@param resume should training be resumed (or restarted from scratch)?
@return the number of training steps performed since the first call to 'train'
"""
# clearing the training directory
if not resume:
if tf.gfile.Exists(train_dir):
tf.gfile.DeleteRecursively(train_dir)
tf.gfile.MakeDirs(train_dir)
print('Training the network in directory %s...' % train_dir)
global_step = tf.Variable(0, trainable = False)
# creating a placeholder, set to ones, used to assess the importance of each pixel
mask, ones = _mask(images, batch_size, flags)
# building a Graph that computes the logits predictions from the inference model
keep_prob = tf.placeholder_with_default(0.5, [])
logits = network(images * mask, keep_prob)
# creating the optimizer
if optimizer == tf.train.MomentumOptimizer:
opt = optimizer(flags.learning_rate, flags.momentum)
else:
opt = optimizer(flags.learning_rate)
# calculating the semantic loss, defined as the classification or regression loss
if flags.boosting_weights is not None and os.path.isfile(flags.boosting_weights):
boosting_weights_value = np.loadtxt(flags.boosting_weights, dtype = np.float32,
delimiter = ',')
boosting_weights = tf.placeholder_with_default(boosting_weights_value,
list(boosting_weights_value.shape),
name = 'boosting_weights')
semantic_loss = _boosting_loss(logits, ids, boosting_weights, flags)
else:
semantic_loss = _loss(logits, labels, flags)
tf.add_to_collection('losses', semantic_loss)
# computing the loss gradient with respect to the mask (i.e. the insight tensor) and
# penalizing its L1-norm
# replace 'semantic_loss' with 'tf.reduce_sum(logits)'?
insight = tf.gradients(semantic_loss, [mask])[0]
insight_loss = tf.reduce_sum(tf.abs(insight))
if flags.insight_loss > 0.0:
with tf.control_dependencies([semantic_loss]):
tf.add_to_collection('losses', tf.multiply(flags.insight_loss, insight_loss,
name = 'insight_loss'))
else:
tf.summary.scalar('insight_loss_raw', insight_loss)
# summing all loss factors and computing the moving average of all individual losses and of
# the sum
loss = tf.add_n(tf.get_collection('losses'), name = 'total_loss')
loss_averages_op = tf.train.ExponentialMovingAverage(0.9, name = 'avg')
losses = tf.get_collection('losses')
loss_averages = loss_averages_op.apply(losses + [loss])
# attaching a scalar summary to all individual losses and the total loss;
# do the same for the averaged version of the losses
for l in losses + [loss]:
tf.summary.scalar(l.op.name + '_raw', l)
tf.summary.scalar(l.op.name + '_avg', loss_averages_op.average(l))
# computing and applying gradients
with tf.control_dependencies([loss_averages]):
grads = opt.compute_gradients(loss)
apply_gradient = opt.apply_gradients(grads, global_step = global_step)
# adding histograms for trainable variables and gradients
for var in tf.trainable_variables():
tf.summary.histogram(var.op.name, var)
for grad, var in grads:
if grad is not None:
tf.summary.histogram(var.op.name + '/gradients', grad)
tf.summary.histogram('insight', insight)
# tracking the moving averages of all trainable variables
variable_averages_op = tf.train.ExponentialMovingAverage(flags.moving_average_decay,
global_step)
variable_averages = variable_averages_op.apply(tf.trainable_variables())
# building a Graph that trains the model with one batch of examples and
# updates the model parameters
with tf.control_dependencies([apply_gradient, variable_averages]):
train_op = tf.no_op(name = 'train')
# creating a saver
saver = tf.train.Saver(tf.global_variables())
# building the summary operation based on the TF collection of Summaries
summary_op = tf.summary.merge_all()
# creating a session
current_global_step = -1
with tf.Session(config = tf.ConfigProto(log_device_placement = False,
inter_op_parallelism_threads = flags.num_cpus,
device_count = {'GPU': flags.num_gpus})) as sess:
# initializing variables
if flags.checkpoint_exclude_scopes is not None:
optimistic_restore(sess, os.path.join(train_dir, 'inception_V4.ckpt'), flags)
# starting the queue runners
..
# creating a summary writer
..
# training itself
..
# saving the model checkpoint
checkpoint_path = os.path.join(train_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step = current_global_step)
# stopping the queue runners
..
return current_global_step
I added a flag to the python script called checkpoint_exclude_scopes
where I precise which Tensors should not be restored. This is required to change the number of classes in the last layer of the network. Here is how I call the python script:
./toolDetectionInceptions.py --batch_size=32 --running_mode=resume --checkpoint_exclude_scopes=InceptionV4/Logits,InceptionV4/AuxLogits
My first tests were terrible because I got too much problems.. something like:
tensorflow.python.framework.errors.NotFoundError: Tensor name "InceptionV4/Mixed_6b/Branch_3/Conv2d_0b_1x1/weights/read:0" not found in checkpoint files
After some googling I could find a workaround on this site where they propose to use the function optimistic_restore
presented in the code above including some modifications to it.
But now the problem is something else:
W tensorflow/core/framework/op_kernel.cc:993] Failed precondition: Attempting to use uninitialized value Variable
[[Node: Variable/read = Identity[T=DT_INT32, _class=["loc:@Variable"], _device="/job:localhost/replica:0/task:0/cpu:0"](Variable)]]
It seems there is a local variable that it's not initialized but I could not find it. Can u please help?
EDITED:
To debug this problem, I checked the number of variables that should be initialized and restored by adding some logs in the function optimistic_restore
. Here is a brief:
# saved_shapes 609
# var_names 608
# name2var 1519
# variables_to_init: 7
# restore_vars: 596
# global_variables: 1519
For your information, CheckpointReader.get_variable_to_shape_map():
returns a dict mapping tensor names to lists of ints, representing the shape of the corresponding tensor in the checkpoint. This means the number of variables in this checkpoint is 609
and the total number of variables needed for the restore is 1519
.
It seems there is a huge gap between the pretrained checkpoint tensors and the variables used by the network architecture (It's actually their network as well). Is there any kind of compression done on the checkpoint? Is it accurate what I'm saying?
I know now what's missing: it's just the initialization of the variables that have not been restored. Yet, I need to know why there is a huge difference between their InceptionV4
network architecture and the pretrained checkpoint?
Variables that are not restored with the saver need to be initialized. To this end, you could run v.initializer.run()
for each variable v
that you don't restore.
Here is how I should define the optimistic_restore
function to let it work as expected:
def optimistic_restore(session, save_file, flags):
if flags.checkpoint_exclude_scopes is not None:
exclusions = [scope.strip() for scope in flags.checkpoint_exclude_scopes.split(',')]
reader = tf.train.NewCheckpointReader(save_file)
saved_shapes = reader.get_variable_to_shape_map()
print ('saved_shapes %d' % len(saved_shapes))
var_names = sorted([(var.name, var.name.split(':')[0]) for var in tf.global_variables()
if var.name.split(':')[0] in saved_shapes])
var_names_to_be_initialized = sorted([(var.name, var.name.split(':')[0]) for var in tf.global_variables()
if var.name.split(':')[0] not in saved_shapes])
print('var_names %d' % len(var_names))
print('var_names_to_be_initialized %d' % len(var_names_to_be_initialized))
restore_vars = []
name2var = dict(zip(map(lambda x: x.name.split(':')[0], tf.global_variables()), tf.global_variables()))
print('name2var %d' % len(name2var))
with tf.variable_scope('', reuse=True):
variables_to_init = []
for var_name, saved_var_name in var_names:
curr_var = name2var[saved_var_name]
var_shape = curr_var.get_shape().as_list()
if var_shape == saved_shapes[saved_var_name]:
excluded = False
for exclusion in exclusions:
if saved_var_name.startswith(exclusion):
variables_to_init.append(curr_var)
excluded = True
break
if not excluded:
restore_vars.append(curr_var)
else:
variables2_to_init.append(curr_var)
for var_name, saved_var_name in var_names_to_be_initialized:
curr_var = name2var[saved_var_name]
variables2_to_init.append(curr_var)
print('variables2_to_init : %d ' % len(variables_to_init))
print('global_variables: %d ' % len(tf.global_variables()))
print('restore_vars: %d ' % len(restore_vars))
saver = tf.train.Saver(restore_vars)
saver.restore(session, save_file)
session.run(tf.variables_initializer(variables_to_init))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With